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Electron correlations in partially filled lowest and excited Landau levels
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The electron correlations near the half-filling of the lowest and excited Landau lgu€ls) are studied
using numerical diagonalization. It is shown that in the low-lying states electrons avoid pair states with relative
angular moment& corresponding to positive anharmonicity of the interaction pseudopot&({ti). In the
lowest LL, the superharmonic behavior\{R) causes Laughlin correlatioiavoiding pairs withR=1) and
the Laughlin-Jain series of incompressible ground states. In the first excite¥(IR) is harmonic at short
range and a different series of incompressible states results. Similar correlations occur in the paired Moore-
Readvzg state and in thez=§ and% states, all having small total parentage frébs+1 and 3 and large
parentage fromR=5. Thev=% and § states are different from Laughlin=3 and § states and, in finite
systems, occur at a different LL degenerdftyx). The series of Laughlin-correlated states of electron pairs at
v=2+2/(q,+2)=%, 3, 2 and? is proposed, although only in the=3 state pairing has been confirmed
numerically. In the second excited L)M,(R) is subharmonic at short range afear the half-filling the
electrons group into spatially separated largerl droplets to minimize the number of strongly repulsive pair

states atR=3 and 5.
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[. INTRODUCTION various explicit paired-state trial wave functions have been
constructed by a number of authdr$~2° Although earlier
When a pure two-dimensional electron g2DEG) in a  theorie$'?® suggested pairing (spin depolarization due to a
high-magnetic field fills a fractiow of a degenerate Landau small Zeeman energy; an idea later seemingly supported by
level (LL), the nature of the ground sta@S) and low-lying  experiments in tilted-magnetic fief#s?), it is now
excitations are completely determined by thé&Zoulomb establishet!'?® that the v=3 state is well described by a
interaction. The correlations induced by this interaction carspin-polarized wave function introduced by Moore and Read
be probed in transport or optical measurements, and, for exMR).2* Morf?” and Rezayi and Haldaffecompared the ac-
ample, the occurrence of nondegenerate incompressible ligual Coulomb eigenstates of up to 16 electrons with different
uidlike GS’s at certain values of is responsible for the trial wave functions, and found that the=3 GS has large
fractional quantum Hal(FQH) effect?* In the lowest 4 overlap with the(particle-hole symmetrizédVR state?* the
=0) LL, the FQH effect is observed at various filling factors phase transition between the “CF behavior” and pairing is
v=3, 2, 2 etc., all being simple odd-denominator fractions. driven by the strength of interaction at short range, and the
The origin of these fractions lies in the special form of actual Coulomb pseudopotential in the=1 LL is close to
(Laughlin) correlation that result from the short-range char- the transition point.
acter of the Coulomb interaction pseudopotenitiain the While the non-Laughlin character of the=3 state fol-
lowest LL. The explanation of all the observed fractions in-lows from Haldane’s “odd-denominator” rule, the type of
volves identification of Laughlin incompressible GS’siat  correlations that cause incompressibility of other FQH states
=(2p+1)"%, wherep is an integer, and their elementary observed~*'in then=1 LL have not yet been completely
(quasiparticle excitations: and the observation that at cer- understood. The occurrence of the FQH effect at such promi-
tain fillings vop the quasiparticles form Laughlin incom- nent Laughlin-Jain fractions as=2+3=3, 2+5=%, or 2
pressible GS’s of their owfr:° This (Haldane’s hierarchy ~ +&=% might indicate that, although weakened because of
construction predicts no incompressible GS’'s at evenreduction of Coulomb repulsion at short range, Laughlin cor-
denominator fractions, in perfect agreement with the experirelations persist in the excitech€1) LL. The decrease of
ments in the lowest LL. Because of its equivaléfiddto  excitation gapge.g., the gap ab=7 being smaller than at
Haldane’s hierarchy picture, Jain’s noninteracting composite’=3) could be interpreted as a direct measure of this weak-
fermion (CF) model®~!° also predicts FQH states at the ening, and it might seem natural that only the most promi-
same fractions. nent FQH states of the=0 LL persist atn=1. Conse-
Quite surprisingly, the FQH effect at an even- quently, one could try to model correlations in the excited
denominator fraction has been discovéfed! in the half- LL’s using some modified version of the hierarchy or CF
filled first excited f=1) LL. The incompressibility atv  picture. For example, it has been propdSédthat the CF’s
=2+1=2 could not be explained within Haldane’s hierar- are formed in excited LL as welli.e., the electrons bind
chy (or Jain’s noninteracting QFpicture and it was imme- vortices of the many-body wave function—which is a defi-
diately obvious that it implied a different type of correla- nition of Laughlin correlations although the effects of
tions. Since even-denominator Laughlin states occur fo€F-CF interactior(pairing are more important ai=1. On
bosons, electron pairing was suggested by Halgéramd  the other hand, numerical calculati6ri$ seem to disagree
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with experiments by showing neither Laughlin correlationspseudopotential parametg@elative to the Coulomb valyet
nor incompressibility atv=%. For example, quite different which the transition between the Laughlin and MR phases
energy spectra are obtaiffdor N<11 electrons at the same has been foun#’?
value of the LL degeneracyflux) corresponding to the From the analysis of the energy spectraNo& 16 elec-
Laughlin v= % filling of the n=0 andn=1 LL’s. In the n trons at different values ofl2(LL degeneracy, we identify
=1 LL, the Laughlin quasiparticles or the magneto-rotonthree series of nondegenerate<0) GS’s which in the ther-
band do not occur, and the excitation gap oscillates as modynamic limit ofN—o andN/(2l+1)— » converge to
function of N and does not converge to a finite value for the incompressible states at=3, £, and$. As shown by
—00, Morf,?” the finite-size MRv= 23 states occur for eveN at
The occurrence of an incompressible GS at a specific fill2l =2N+ 1. Thev= £ state occurs atl2=3N— 7, which is
ing factor results from the type of correlations that generallydifferent than 2=3N—3 of the Laughlinv=73 state (the
occur in the low-lying states near this filling. Therefore, same is true for their particle-hole symmetric conjugates at
these correlations must be studied before the correct triat=2 and3).
wave functions can be constructéat, at least, before their The analysis of th&j(R) curves obtained for different
success can be understpo@he correlations near the half- values of N and 2 and different model pseudopotentials
filling of the lowest and excited LL’s are the main subject of shows that the electron correlations near the half-filling of
this paper. We assume complete spin-polarization of the pathe n=1 LL depend critically on the harmonic behavior of
tially filled LL and perform the numerical calculations in V(R) at short range(At v<32 the CF picture with four
Haldane’s spherical geometry, where each LL has the formattached fluxes works and, for example, the ¥ state has
of a (2 +1)-fold degenerate angular momentum shell. TheLaughlin correlation§) Thus, the three incompressible states
correlations in a Hilbert space restricted to an isolated LL arext =32, 2, and £ all have similar(not Laughlin electron-
best defined through the occupation numbéiractional  electron, although maybe Laughlin pair-paiorrelations. In
parentage”*"%j G for different pair eigenstates labeled by all low-lying states near the half-filling, electrons minimize
the relative pair angular momentu®. The G(R) contains  the total parentage from two pair states of highest repulsion,
more information about the nature of a studied many-bodyR =1 and 3, which results ig(1)~G(3) and large value of
state than its overlap with a trial wave function. It is also G(5). Cusps in the dependence @f1)+ G(3) andg(5) on
easier to interpret than the real-space pair-correlation funay and 2 coincide with occurrence of incompressible= 3,

tiong(r). _ %, and$ states(similar to cusps ing(1) andG(3) in then
We explain the effects of harmonit/(;) and anharmonic =0 LL signalling the Laughlin-Jain statesFor the MR v
(Van) parts of the interaction pseudopotentié:Vy+Vay =3 state, the number oR=1 pairs is roughly equal to the

on correlations. Th&/(R) is a pseudopotential of a repul- half of the electron numbefN, which supports the conjec-
sive harmonic interaction potentiaV/,(r)=Vy(0)—br? ture of pairing.
(whereb>0 is a constantwithin the nth LL. The relation In the second excitech(=2) LL, V(R) is subharmonic at
between the anharmonicity &f and correlations do not de- short range and superharmonic at long range, and the mini-
pend on geometry, even though the specific fornvgfR) mization of energy requires avoidance of strongly repulsive
does: on a planeyy is linear in 'R, while on Haldane’s pair states at the intermediafe=3 and 5, that is having
sphere, it is linear irL"(L"+1), whereL’=2l—-TR is the  G(3)~G(5)<G(1)~G(7). This is achieved by grouping of
usual total pair angular momentuin. electrons into spatially separated=1 droplets. Our values
Although the division ofV into Vi andV sy is not unique,  of G(1) suggest that in a finite system each droplet consists
a simple theorem that links thg(R) profile of low-lying  of three electrons. This precludes pairing in the 3 state,
states with the sign of the anharmonic part is formulated folbut not formation of larger droplets or the charge-density-
the particular R-dependentchoice of V(¥ for which wave stripe ordéf34in an infinite system.

VER(R+2)=V{RQ(R+4)=0. (1) Il. MODEL

We consider a system of electrons confined on a
It follows from this theorem that the Laughlin correlations Haldane sphefeof radiusR. The magnetic fiel® normal to
occur in the vicinity ofv=(2p+1) 1, that is, the pair states the surface is produced by a Dirac magnetic monopole
at all R<2p—1 are maximally avoided, if and only if placed at the origin. The strengthfS2of the monopole is
VX,?(R)>O at eachR=2p—1. The positive or negative defined in the units of flux quantun®,=hc/e, so that
sign of VX,?(R) defines the super- and sub-harmonicity of 47R?B=2S¢, and the magnetic length is=R/\/S. The
interactionV at a given value ofR, respectively. In these single-particle stategmonopole harmonig&®3¢ are the
terms, the theorem can be rephrased as: The Laughlin correigenstates of angular momentlig,aS and its projectiorm.
lations occur atv~(2p+1)~1 if V is superharmonic @R  The single-particle energies fall into (2 1)-fold degenerate
<2p—1, that is at short range, and they are destructed wheangular momentum shelld L's), and thenth shell hasl
V becomes harmonic or subharmonic at short rérigéhe ~ =S+n.
identification of the change of correlations wh¥rchanges At large B, the electron-electrofCoulomb interaction is
from superharmonic to harmonic at short range clarifies theveak compared to the cyclotron enerfjy., and the scat-
physical meaning of the critical strength of the highesttering between different LL's can be neglected. In the low-
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lying many-electron states at a filling factogy,=2f+ v 1 o
(wheref is an integer and’<<1), a numbeff of lowest LL's EN(N_ 1)% GLa(R)L'(L"+1)
(with n=0, 1,...,f—1) are completely filled. For simplicity,
in the following we will omit the subscript “tot” and, de- =L(L+21)+N(N=2)I(1+1), 4
pending on the contexi; will denote either partial filling of
the highest occupied LL or the total filling factey,. whereL’=2l—R.

The Coulomb interaction within a partially filled L{with
n=f) is given by a pseudopotential V{"(R). The pseudo- IV. LAUGHLIN CORRELATIONS
potential V(R) is defined as the interaction eneryyof a
pair of particles as a function of their relative angular mo-
mentumR. On a sphereR=2l—L’ whereL'=|l,+1,| is
the total pair angular momentum. For identicapin-
polarized fermions,R is an odd integer, and larg& means
larger average separatifn.

The many-electron Hamiltonian can be written as

The pseudopotentia¥/,,(R) of the harmonic interaction
V(r)=Vy(0)—br? within an isolated fith) LL is linear in
L'(L"+1)° and from Egs.(3) and (4) it follows that its
energy spectrum is degenerate at each valuk. oh other
words, the harmonic interactidwithin an isolated LI does
not cause any correlations, which are hence entirely deter-
mined by the anharmonic pawt,,(R) of the total pseudo-
potential V(R)=Vy(R) +Vau(R). Moreover, at a filling

H:Z cTcTckc|<ij|V|kI>+const 2) factor v=(2p+1)"%, most important is the behavior of
o ' V(R) at R<2p-+1 (corresponding to the pair of “nearest”
electrons in the Laughlin stgtend at those values where
wherec! (c,) creates(annihilate$ an electron in stat¢l ~ V(R) changes most quicklyi.e., where the “effective
=S+f,m) of then=f LL, the two body interaction matrix force” ~dV/d(r) is the largest The occurrence of Laugh-
elements (ij|V|kl) are related withV(R) through the lin correlations in the FQH systems and their insensitivity to
Clebsch-Gordan coefficients. The constant term includes thé#e details of the pseudopotential result from the following.
energy of the completely filled LL’s with< f, the cyclotron Theorem L:f for any three pair states &&;<R,<Rj
energy of the electrons in the=f LL, and their interaction the pseudopotentiaf increases more quickly than linearly as
with the underlying(rigid) completely filled LL’s, and will @ function ofL’(L"+1), that is,V is superharmonic mean-
be omitted. ing that V,y can be chosen so thaf,y(R.)>0 and

Hamiltonian(2) is diagonalized numerically in Haldane’s Van(R2) =Van(R3)=0 [cf. Eq.(1)], then the energf, of
spherical geometry, for a finite numb@t of electrons at @ many-electron state can be lowered without changing its
different values of B, corresponding tg¢ <v<2. The result  total angular momenturh by transferring some of the par-
is the spectrum of energl as a function of total angular entage fronG(R,) andG(R3) to G(R,) in accordance with
momentumL. The L=0 ground states separated from the Ed. (4).
rest of the spectrum by an excitation gAprepresent the This theorem was earlier found numericdilgnd it can
nondegenerateki=0) GS's on a plane. If a series of such be easily proven by noticing that the above-mentioned trans-
GS’s can be identified at increasiny and 2=»"IN fer of (infinitesima) parentage without changing means
+const, and if the gap\ does not collapse in thel—o  replacing G(Ry), G(R;), and G(Rs) by G(Ry)-— 61,
limit, these GS'’s describe an incompressible state of an infig(R2) + 62, andG(R3) — 3, respectively, such that; + 53
nite 2DEG at a filling factor 2+ v. =8, and, from Eq. (4, &Lj(Li+1)+d5L3(Ls+1)
=8,L5(L,+1). Clearly, such transfer does not change the
total energyE, given by Eq.(3) if Vis harmonidi.e., linear
in L'(L"+1)], andthat it decreases or increades if V is

The electric conductivity and other properties that involvesuperharmonic or subharmonic, respectively.
electron scattering depend critically on the correlations in the It follows from theorem 1 that it/(R) is superharmonic
partially filled LL, which in turn depend entirely on the form at smallR (at short range the lowest-energy states at edch
of interaction pseudopotential(R). The correlations are Will have minimum possible parentage from thenost
best described in terms of the coefficients of fractionalStrongly repulsivg pair state at the smallest value Bf=1.
(grand parentag®’?*2(CFGP G(R). The CFGP gives a Depending on the values ® and 2, the parentage from
fraction of electron pairs that are in the pair eigenstate of &=1 may even be avoided completely in the lowest-energy
givenR, and thugj(R) can be regarded as a pair-correlation states at some. The complete avoidance pfpair states at
function. The energyE, , of a state|La) can be conve- R<2p—1 is described by a Jastrow prefactéli;(z
niently expressed through CFGP’s as —zj)2p in the many-electron wave function. In particular, the
Laughlin incompressible= (2p+1) ! GS' is the only state
at a givenN and 2 for which G(R)=0 for R<2p—1.

Ill. FRACTIONAL PARENTAGE

1
EL=5N(N=1) 2 GL(RIV(R), (3
V. PAIRING AND LAUGHLIN PAIRED STATES
and the normalizaton condition i£x;G ,(R)=1. The The opposite of theorem 1 applies fgrthat is subhar-
CFGP’s also satisfy another constrdirit, monic for any three pair states&f <R,<Rj. In such case,
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it is favorable to transfer parentage from the intermediaje g,+2
to the smallesfR, and largestR;. For the pseudopotential 2l=
that is subharmonic at short range, large parentage from the
pair state at the minimum value =1 in the lowest- That is becauséin a finite system on a spher&aughlin
energy many-electron states is equivalent to the formation gfaired states of electrons atlo not occur at the same values
R=1 pairs. Such pairing would be energetically favorable toof 2| as the Laughlin paired states of holes ati (a similar
minimize parentage from the strongly repulsike=3 state, effect was discussed in Ref. 38
even at the cost of a larger parentage from(te&tively less If only a fraction 2N,/N<1 of electrons formed pairs in
repulsive R=1 state. Although the resulting pairs are nota many-electron state, the correlations should be described in
formed because of any electron-electron attraction, but ratheerms of N, pairs (bosong and N;=N—2N, excess elec-
because of repulsion from the surrounding 2DE@d thus  trons (fermiong. The pair states of one electron and one
their stability depends om), the many-electron correlations electron pair are labeled bly;,=1,+1,— R, wherel,=I
can be described in terms of electron pairing and(fwssi-  and R, is any integer, and the electron-pair interaction is
bly simplep correlations between pairs. defined by V;5(R,). A multicomponent MF composite
On a sphere, eacR=1 pair is a boson with the total transformationCP) can be used to account for the electron-
angular momentum df,=2l—1. The two-boson pair states pair hard core that forbid®,,< 2. In such transformatiof,
are labeled by the total angular momentwh=2l,—R,  each electron couples m,=2 flux quanta attached to each
whereRR, is an even integer, and the pair-pair interaction ispair, and each pair sees equal numpgrof fluxes attached
defined by an effective pseudopotentigl(R,). The Pauli  to each electroin addition to 2, fluxes that each pair sees
exclusion principle applied to individual electrons results inon every other pajr giving CF and CB angular momenta
a hard core at a numbe,=2 of lowest values ofR, (simi- 15 =1,— 1pN;—po(N,—1) andl}=1,— 1pN,. Itis easy
lar to that of charged excitol, so thatR,=2p, for all g check that a full shell oN=2I+1 electrons(the »=1
pairs. Such hard core can be accounted for by a mean fieltate can be viewed as the only available stateNgfpairs
(MF) composite bosoiCB) transformation with P, flux  and N;=21+1-2N, excess electrons, in which the pairs
quanta attached to each boson. The CB transformation giveg)ndense att =0 and the electrons completely fill their CF
an effective CB angular momentuf =1,—p,(N,—1),  ghell of A¥=N;—1.
whereN, is the number of pairs. In the CB picture, allmany- |t hoth electron-pair and pair-pair repulsions are superhar-
bosonL-multiplets can be obtained by additionl§ angular  monjc, additional CP transformations can be used to select
momental; of individual CB’s (WlthOUt an additional hard |Ow_energy states in which an appropriate number of
corg. For example, thes=1 state of electrons corresponds electron-electron, pair-pair, and electron—pair pair states at
to the condensate of CB’s in their only availabje=0 state.  the smallestR,, R,, and R,,, respectively, are avoided.
If the pair-pair pseudopotential/,(R,) is superharmonic While the discussion of the multicomponent electron-pair
(andl3>0), an additional MF CB transformation attaching (boson-fermion liquids with Laughlin correlations will be
an even number of @, fluxes to each pair can be applied to presented elsewhefgJet us note that such a state might be
select the lowest energy band of paired states that avoid @more appropriate description of the= % state than a fully
number ofq, lowest values ofR, beyond the hard core. The pairedvs =3 state.

N+1. 7
" @)

electron and CB filling factors, in thid—co limit defined as The idea of a paired incompressible GS:at3 (half-
v=N/2l andv3 =N,/2|5 , are related by flled n=1 LL) has been suggested by a number of
authors;??~°as the even-denominator fractions are charac-
v l=(4v3)"1+1 (5) teristic of Laughlin-correlated systems of bosons. However,

as shown in Fig. (), the Coulomb pseudopotenti{)(R)

and, for example, the series of Laughlin correlated CB statef, the first excited LL is almost harmonfdinear in L' (L’
atlv’52=%i s, 7, and occur at the electron filling factors ~ +1)] rather than subharmonic betwe@=1 and 5, and

=3, &, 3, and %, respectively. It is quite remarkable that, super-harmonic at largé?. Whether the above-sketched CP
coincidentally, some of the most prominent odd-denominatopicture correctly describes correlations in the 3 state de-
Laughlin-Jain fractions occur among these states along withends on whether the harmonicityr weak superharmonic-
the (even-denominatgrhalf-filled state. ity) of V&)(R) at R<5 is sufficient to cause pairing. If only
On a Haldane’s sphere, Laughliff =(2q,) " states of the pairs are formed, the pair-pair repulsion will certainly be
bosons have 12 =2q,(N,—1), and thus the Laughlin- superharmonigfor the relevantR,) because the Coulomb

correlated paired=2/(q,+2) states occur at repulsion in then=1 LL is subharmonic only for smaiR,
and not for electrons that belong to different pairs.
g,+2 It is noteworthy that inclusion of the effects of the finite
2l= 2 N—1-d;. 6)  width of the quasi-2D electron layer even enhances the har-

monicity of the Coulomb pseudopotential at short range.
It is noteworthy that applying the particle-hole symmetry This is because the pseudopotential of the 3D Coulomb in-
(N<~Nj, whereN,=2l+1—N is the number of holes in teractionV(r,z) < 1/\r2+Z? in a quasi-2D layer of widtiw
the isolated LL to Eq. (6) generates a different series of can be well approximated by that of an effective 2D potential
states at V(r)=1/\Jr?+d? with d=w/5 and becauseV(r)~(1
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nondegeneratd (=0) GS’s with slightly smaller gaps occur
for all even values oN=N,, (i.e., at 2=2N—1), except for
N=10. Both these series correspond to the half-fitked1
level (i.e., tov=3) in the N— limit. In the following, we
assume that the series Nfelectron GS’s at P=2N+1 in
then=1 LL describes ther=3 state of an infiniteplanaj
system, and study correlations in these states.

We have also identified two other series of nondegenerate
GS’s with fairly large excitation gaps. One series occurs at

(a) Coulomb both odd and even values7Nfand at 2=3N—-7, and these

L ' ' ' GS'’s correspond to the= 3 filling in the N—< limit. The
° 200|_-(|_v+1)400 600 0 200|_-(|_v+1)400 600 gaps forN=8, 9, ..., 12electrons aréd =0.0192, 0.0295,
0.0217, 0.0140, and 0.00&9\, respectively. From the
particle—hole symmetry, a conjugate series occurs at even
values ofN and at 2=3N+2, and corresponds to=%.
Note that neither of these series occur at the valueslof 2
given by Eqs(6) or (7) corresponding to the Laughlin paired
vy =3 (for v=1) or v5 =% (for v=%) state. Note also that

21m 42 although the GS’s at|2=3N—7 haveL=0 and significant
—r4/2d)/d at smallr. O.n(.a can expect that other effects gap A at every value oN that we were able to check nu-
(such as due to the LL mixingare too weak to produce large merically, the magnitude of their gap decreases too

anharmonicity, and thus that the actual pseudopotential th"i‘fuickly with increasing\ to allow a definite statement of the

occurs in the experimental systems is indeed nearly hagqcompressibility of these GS's in the thermodynamic limit.
monic atR<5.

Therefore, although our numerical results f9=12 show

perfect regularity in the occurrence &f=0 GS’s with a
VI. NUMERICAL ENERGY SPECTRA large gap at P=3N—7 as a function of the system size, it

FOR THE COULOMB PSEUDOPOTENTIAL cannot be ruled outbased on our numerics alonéhat the

If an incompressible GS occurs in an infinite system at a2ap for th's. series coII_aﬁ)ses i tite— e '".””'t- However, I
certain filling factorv, and if the correlations responsible for since aa? mcgrr?]pressm_e FQH state IS experlme,nta y
the incompressibility have a finitesshor) rangeé¢, then the observg ﬁt V= gnd|5|nce no .ot-her Se”ﬁf ?f:ﬁ Gﬁs
L=0 (nondegenerajeGS’s are expected to occur in suffi- o;:(t:rl:rsgn_tstla\lrlu?en(.:a spect.r?, I;NIIS n;or? kely that t ti 9ap
ciently large R> ¢) finite (spherical systems for a series of ]?” €a= Vsi se;les pelrstlls S A .thgza?)?_ltl:_ase, €
electron numberdN and LL degeneracies|z 1, such that oflowing analysis ot correlations ne_ar s MHing re-
N/(2 +1)— v for N—oo. In particular, for thev=2 filing ~ Mains valid whether the proposed=23N—7 series does
(of then=1 LL; relevant for thev= 3 staté we expect such represent the incompressible= 5 state or not.
series atN/(21 +1)— 3, for whichN,/N— 1. The excitation
gapsA above theL=0 GS'’s are generally expected to de-
crease as a function of (as the size quantization weakgns
but it must converge to a finite valu®,.>0 in the N—oo
limit. The pseudopotential of the Coulomb(~1) interaction

We have calculated the energy spectra of up to 16 eleds different in different LL's. Fom=0 it is superharmonic in
trons filling 3 <v<$ of the lowest, first excited, and second the entire range oR, while for n=1 it is superharmonic at
excited LL. Due to the particle-hole symmetry in an isolatedR=5 but harmonic betweeR=1 and 5. To study the tran-
LL (N<Ny), only the systems wittN,=N need be consid- sition of the electron system at=3 from the Laughlin- to
ered. The dependence of the GS degeneracy and excitatizmR-correlated phase we use a model pseudopotanficR)
gapA onNand 2 (i.e., onN andv) is different in different  shown in Fig. 1b), for whichU,(1)=1, U,(R=5)=0, and
LL's. As pointed out by Morf’ near the half-filling of the U, (3)=xV,,(3), whereV,,(3) is the “harmonic” value de-
n=1 LL the nondegenerateL 0) GS’s with the largest fined so thatJ, is linear inL'(L’+1) for R between 1 and
excitation gaps occur in systems with the even valuell of 5 TheU,(R) is intended to model the anharmonic part of a
and [N—Np|=2. This corresponds to eved and 2=2N  repulsive (Coulomh pseudopotentialat short range The
—3, the values for the MR/=3 state, or its particle-hole omitted harmonic part does not affect many-electron wave
conjugate at P=2N+ 1. Indeed, these numerical GS’s were functions and only results in a shift of the entire energy spec-
showrf’ to have large overlap with the spherical version oftrum by a constantL(L +1). The variation of in U(R)
the exact MR trial wave function. Note also that, as given byfrom x=0 throughx=1 up tox>1 (superharmonic, har-
Eq. (7), the value 2=2N—-3 describes the Laughlin} monic, and subharmonic at small, respectively allows
=% state ofR=1 pairs. The excitation gaps fot=Ny+2 calculation of wave functions and energy spectra of systems
=10, 12, 14, and 16 electrons ark=0.0192, 0.0258, whose low-energy states have well-known correlations
0.0220, and 0.02E3/\, respectively. A similar series of (Laughlin correlations ax=0 and pairing or grouping into

—8— n=0 (b) Uy

(c) Wx

FIG. 1. The pseudopotentialenergy vs squared-pair angular
momentun of the Coulomb interactiov!" in the lowest 6=0)
and two excitedif=1 and 2 Landau levelga), and of the model
interactiondJ, (b) andW, (c), calculated for Haldane’s sphere with
21=25. \ is the magnetic length.

VII. NUMERICAL ENERGY SPECTRA
FOR MODEL PSEUDOPOTENTIALS
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N=8, 25=17 N=10, 25=21 N=12, 25=25 systems used in our example, the lowest states areJain
N REE R FE N =2 GS atL=0 and the band of excited states atR<6
e Ta siae ) L containing a quasielectron—quasihd@E-QH pair (b’ —

: ’ o ¢'), and the states containing a pair of QHs-¢ or QE’s
(b"—c") in the v=2 state.
@] il s (") While it is well known that the energy spectra for 1
T T : are similar to the Coulomb spectra in the lowest LL, they are
tey ¢ Tmigk, 8 clearly different from those in the first excited LL. As ex-
ES R Tt pected from the behavior &f3)(R), the best approximation
TaN . iy T . to then=1 Coulomb spectra is obtained for, with x~1.
"0 o) ||o 215 (b)|| 25+2QE ™ (b") Regardless of the value of GS angular momentum inxthe
. : =0 spectra, th&.=0 GS’s occur in all the three systems at
2 my I x=1. At x>1, whenU,(R) becomes strongly subharmonic
I . ) e betweenR=1 and 5, thd.=0 GS persists in some systems
A : v ’ (f and ') but not in othergf’).
©]» ©][* T Similar plots for thev=1% spectra ofN=9, 10, and 11

H TER it .o electrons at P=3N—7 are shown in Fig. 3. For ead!y the

) A low-lying states of superharmonic pseudopotentiglg
(b—H") andUg 5 (c—c’) contain four QE’s in the Laughlin
v=3 state, while the Coulomb spectra in tme=1 LL
@ ||o @] (d") (a—d) all have aL=0 ground state with a significant exci-
vy L tation gap, and all resemble the spectra of harmonic and
R subharmonic pseudopotentidls; (d—d'), U, (e—€), and
Ug (f—f").

1

Coulomb, n

Uy, x=0

=0.5

Uy, x
.

1

Uy, x

=2

Uy, X

O L VIlIl. CORRELATIONS IN LOW LYING STATES

5

To find out if the correlations at=3 or % can be under-
stood in terms of electron pairing, we have analyzed the
’ C N . CFGP'’s of low-lying states near the half-filling. In Fig. 4 we
= S ol s .(f)l =, — (.f), show some examples of the fulf(R) profiles (pair-
¢ 24 BB WY =20 8WE B %08 810 correlation functionscalculated for the lowest =0 states
of eight and ten electrons atl22N+1 (»=3) and 2

FIG. 2. TheN-electron energy specti@nergy vs angular mo- =3N—7 (v=1%). TheN=8 state at =17 (a—9 contains
mentumL) on a Haldane’s spheré=8 and 2=17 (a-, N two QH’s in the incompressible= £ state for the Coulomb
=10 and 2=21 (d~f"), andN=12 and 2=25 (d'-f"), calcu- interaction in the lowest LL, and it becomes a MR GS with a
lated for the Coulomb pseudopotential in the first excited Landauarge excitation gap in the first excited LL. Ti=10 state
level V&) (a—4), and for model interactiot, with x between 0 gt 21 =21 (& —¢') is the Jainv=2 state in then=0 LL, and
(b—-b") and 5 (f—f"). Circles and lines mark the lowest energy the MR state fom=1. Finally, theN=10 state at P=23
states. The Moore-Reag= 3 state is the ground state in each Cou- (a'—c") contains four QE’s in the Laughlin=1 state in the
lomb spectrum. n=0 LL, and it is thev=% state forn=1.

It can be seen in Figs.(d—4d) that for all three systems,
larger clusters ak>1), and their comparison with those of the (Laughlin correlations obtained for the=0 Coulomb
Coulomb pseudopotentials for different The comparison interaction are well reproduced by the model superharmonic
of then=1 Coulomb energy spectra with the spectrdJgf interactionU, with x=0 (the Laughlin correlations mean
with x=0, 3, 1, 2, and 5 is shown in Fig. 2 for the systemsthat the parentagg(1) from the R=1 pair state is mini-
of N=8 (a-f), 10 (d-f"), and 12 electrons (af") at 2l mized. From Figs. 4b-b'), the correlations in the=1 LL
=2N+1, in which the MR GS occurs in the=1 LL. The are quite different, and they are better reproduced by the
energy scale is not shown on the vertical axes because thodel interactiond, with x=1 (harmonic at short range
graphs are intended to show the structure of low-energ{learly, the Laughlin-like “correlation hole” aR=1 char-
spectra rather than the values of eneftie values obtained acteristic of low lying states in the=0 LL is absent fom
for the model pseudopotentials scale with(1), which we  =1. Instead, the total parentage from the two state® at
arbitrarily set equal to unity, and should include additional=1 and 3 is minimized, which results in the shift of the
energy due to the neglected harmonic part of the pseudoporaximum of G(R) from R=3 (as is forn=1) to R=5.
tential). Finally, the correlations fon=2 shown in Figs. &-c’) are

In the spectra foix<1l (b—b' and c—€) the low-lying  not well reproduced byJ, with any value ofx. A better
states have Laughlin correlations and can be understoaapproximation is obtained for a model pseudopotential
within the CF(or Haldane’s hierarchypicture. For the three W,(R) shown in Fig. 1c), for which W, (1)=1, W,(R

Uy, x
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N=9, 28=20 N=8,21=17,L=0  N=10, 2I=21, L=0 N=10, 21=23, L=0
1 03+ () @) —e— Coulomb
< o u <
(g) 02 o W . °m§
S 9 @ 3
o 0.1 J=
0.0
= 0.3 (b) ()] (b7}
x
= 02 =
[
o 5/2&7/3 5/2 7/3 ]
0.1 c
0
9 0.0
= 0.3 (© () (c")
> <
0.2 o8
T v @
. si it . L. SN D a2
- * LB R 01 =
;{ . o s
S L o e e e e L e B N L L
(d) (d) (d" 1 5 % 13171 & 9%13 17 211 5 9 13 17 24
] : T : L] I . L] :
o * . : FIG. 4. The pair-correlation functiongoefficient of fractional
x parentageg vs relative pair angular momentuf) in the lowest
=) energyL =0 state ofN electrons on a Haldane’s sphed=8 and
© (e) @) || (e") 21=17 (a—9, N=10 and 2=21 (d—-c'), andN=10 and 2=23
i ceii: Y3 .f 008 (a'—c"), calculated for the Coulomb pseudopotential in the lowest
o e B F H oL, (a—4d), first excited (b—l’), and second excitedc—c¢’) Landau
3 e ) ) level, and for the appropriate model interactidg or W, .
=)
) ®) ") changes from 0 to 1 and 2 occurs for all low-energy states
T — (not only for the GS or thé.=0 sectoy and at any filling

factor v between abou} and%. Since the(Laughlin corre-
lation hole at smallR results from the superharmonicity of

FIG. 3. TheN-electron energy specti@nergy vs angular mo- the pseudopotential at short range, it is not surprising that
mentumL) on a Haldane’s spherdd=9 and 2=20 (a-f/, N this hole changes from a single pair statefat1 (for n
=10 and 2=23 (d—f'), andN=11 and 2=26 (d—f"), calcu-  =0) to a couple of pair states &=1 and 3(for n=1) or at
lated for the Coulomb pseudopotential in the first excited Landaup =3 and 5(for n=2), when the range oR in which the
level V&) (a~d), and for model interactiot, with x between 0 (Coulomb pseudopotential is subharmonic changes with
(b-1) and 5(f-f"). Circles 7and lines mark the lowest energy  The crossover between the Laughlin correlations and pair-
states. The incompressible= 5 state is the ground state in each ing is best observed in the dependence of the CFGP’s at a
Coulomb spectrum. few smallest values oR on the anharmonicity parameter

of the model interactiotJ, . In Fig. 6 we show the plots of

=7)=0, W,(3)=xVy(3), and W,(5)=xVy(5), that is  G(1), G(3), andg(5) for the same lowedt=0 states as in
W,(R) is harmonic betweerR=3 and 7, andx controls  Fig. 4, that is, states of eight electrons &t=217 (a) and of
harmonicity betweerR=1 and 5. Similar plots for larger ten electrons at2=21 (b) and 23(c), obtained for theU,
systems oN=12 and 14 electrons interacting through Cou-interaction. Atx<1, whenU, is superharmonic in the entire
lomb pseudopotentials are shown in Fig. 5. In thel LL, range of R, the Laughlin correlations occur, meaning that
all threeL =0 states in frameg—b'") are the incompressible G(1) is close to its minimum possible value. As long as the
ground states at=3 or 1. interaction is superharmoni@t short rangg the values of

Let us note that a tendency Gfto decrease with increas- CFGP’s(and thus also the wave functionseakly depend
ing R, observed most clearly at larg®r (i.e., at separations on the details of the pseudopotentifkre, onx). At x>1,
beyond the correlation lengthis characteristic of the closed correlations of a different type occur, which persist up to the
(spherical geometry. For exampl&; decreases linearly as a x—c limit. These correlations mean avoiding as much as
function of R (for the v=1 stat¢. However, the occurrence possible the pair state &= 3 (i.e., the most superharmonic
of minima and maxima ig%(R), i.e., the differences between part of U,), which results in a large parentage froR= 1.
the values ofj at neighboring values @, is independent of The abrupt crossover between the two types of correlations
the geometry. occurs nearx=1, whereG(1) quickly increases from its

The above-described change of correlations when minimum value,G(3) drops to its minimum value, and a
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N=12, 2I=25, L=0 N=12, 2I=29, L=0 N=14, 21=29, L=0 N=8, 2I=17, L=0 N=10, 2I=21, L=0 N=10, 2I=23, L=0

02 @ (@)

0.1

R
0=u

0.0
0.2 (b) (b) (0"
»
52 713 52 2 (@ Ux O Y« —% 7 [en=0]__ (@ Y
0.1 [
0.0
0.2 {© (© (")
=)
3
7 \/\ 'I{)
(0 e e S B S B L Sl L I L L L LS I S S B B B B L 0.0 — —— T — T
1 59?731721251 591:}{172125291 591:?%17212529 0 1 2 3 0 1 2 3 0 1 2 3
X X X
FIG. 5. The pair-correlation functiorigoefficient of fractional FIG. 6. The dependence of the coefficients of fractional parent-

parentagey vs relative-pair angular momentl’Jm) in the lowest  a4eg from pair states at the smallest values of relative-pair angular
energyL =0 state ofN electrons on a Haldane’s spheNe=12and  \omentum =1, 3, and 5, on the anharmonicity parametesf

21=25 (a—9, N=12 and 2=29 (d—c), andN=14 and 2=29  1e model pseudopotentidls, (a,b,0 andW, (d,e,h, calculated for
(a'=c"), calculated for the Coulomb pseudopotential in the lowestie [owestL =0 state ofN electrons on a Haldane’s spheNe=8
(a—d), first excited (b—1'), and second excitedc—c’) Landau  gng 2=17 (a,d, N=10 and 2=21 (b,®), andN=10 and 2=23
level. (c,f). The values of; for the Coulomb pseudopotential in the lowest
and two excited Landau levels are marked with symbols.
maximum occurs irg(5). At the crossing points in frames
(@b, G(1) is close to the valueN—1)~* describingN, ~ G(1) in this state seems smaller thgq,«,(1). This pre-
= 3N pairs each withiR=1. To obtain this value, which we cludes a description of this state as involving Laughlin cor-
will denote byGy,x2(1), we use thdact that the contribu-  relations amongN electron pairs each witiR=1.
tion of eachv=1 droplet ofN’ electrons to the total number The correlations induced by(g) are different from those
$N(N—1)G(1) of R=1 pairs is sN'(N'—1)G;n/(1), inthen=0 orn=1 LL and cannot be modeled Wy, . The
where the coefficiend, «n:(1) describes an isolated droplet. reason is tha\‘/g) is not superharmonic up tB=7. A better
The CFGP’s calculated for the Coulomb pseudopotentialapproximation is obtained using model pseudopotential
with n=0 and 1 are marked in Fig. 6 with full symbols. The W,(R). The plots ofG(1), G(3), andg(5) for theW, inter-
symbols are plotted at arbitrary valuesofo show that the action in Figs. 6d,e,§ show a similar breakup of Laughlin
correlations forV(CO) can be well reproduced by, with a  correlations atx~1 as those folJ,. It is clear that the
finite x<1, and that the correlations forﬁ:l) are well ap- correlations in then=2 LL can be modeled byV, with an
proximated byU, with x~1. appropriatex>1, and also that the effective value xfi.e.,
The most important conclusion from Fig. 6 is that thethe correlationsdepends orv. It can be expected that the
correlations in the partially filledin particular, half-filled tendency to occupy th& =1 state and to avoid th& =3
LL are very sensitive to the harmonicity of the pseudopotenand 5 states will cause grouping of electrons into larger drop-
tial at short range, and the largésmallest number of pairs lets of local v significantly larger than the average value
occurs at those of small values &, at which V(R) is  (v)=N/2l. The local filling factor of each droplet could be
sul{supetharmonic. The Coulomb pseudopotentiff) in  as high asv=1 if the parentage from th& =1 pair state
then=1 LL is nearly harmonic betweeR=1 and 5, and Wwere maximized. Indeed, the valuesgtfl) for the Coulomb
thus the correlations it causes correspond to the crossovetates in Figs. @,e,h are much larger thady,»»(1). Let us
point between the sub- and superharmonic regimes. Thgdd that thelocal) filling factor of very small droplets is not
number of R=1 pairs in the(MR) GS atv=3 is almost as well defined as for a macroscopic system. By saying that
equal to half the number of electrong\. This is consistent g small droplet hag=1 we only mean that, as in the mac-
with the notion of the paired character of thidR) ground  roscopicv=1 system, theR=1 pair state is occupied as
state, and supports its interpretation at the Laughlin paireg¢huch as it is allowed by the Pauli exclusion principle. For
vy =7 state. Thev=% GS shown in Fig. 6 does not occur at example, thev=1 state of a two-electron droplet simply
the value of 2 given by Eq.(6) or (7). Also, the value of means theR=1 pair state.
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n=0 n=1 n=2 possible the total parentage from pairs states corresponding
011 & 8 IS N=10 to Vau(R)>0. Because of relatio), minimization of par-

8/3&5/2

entage from those most strongly repulsive pair states implies
large parentage from less strongly repulsive pair states at the
neighboring values oR. Thus, forn=0 the occurrence of
incompressible Laughlin-Jain states with larfyecoincides
e with downward peaks irG(1) and upward peaks ig(3).
Y X For n=1, whereG(1)+G(3) is minimized, largeA coin-
0.5 M\@ cides with upward peaks ig(5). Finally, for n=2 the oc-
| currence of gaps seems to be connected with the behavior of
g(7).
m&n“& Note that in then=1 LL, the gapA=0.004%?/\ in the
7 @ © " N=12 electron system atl 2 29 is smaller than the gaps for
0.0 -H——+r—rr o+ e e N=<11 at the same filling factofgiven by 2=3N—-7) and
12 18 22(; 24 2812 16 22‘; 24 2812 18 22? 24 28 than the gap foN=12 at a neighboring I2= 28. The dimin-
ishing of A as a function ofN in the 2=3N-7 series of
FIG. 7. The dependence of the excitation dag,0 and the GS’s indicates that this series might not describe the ob-
coefficients of fractional parentagkfrom pair states at the smallest served incompressible= % state in theN— o limit. In any
values of the relative-pair angular momentuR=1, 3, 5, and 7 case, it remains true that the occurrence of a finite-kize
(d,e,h on 2, calculated for the ground stateshf- 10 electronson =0 GS with a large gapX=0.020%%/\) at N=12 and
a Haldane’s sphere, in the lowdstd, first excited(b,e), and sec- 2| =28 coincides with an upward cusp #(5).
ond excited(c.,f) Landau levels. For degenerate ground states ( The occurrence of similar maxima iG(5) at V:g, %,
#0) the gap is set to zero. and £ (or, more exactly, at the values dfand 2 at which
nondegenerate GS'’s with large gaps o¢dor n=1 indi-
More insight into the nature of correlations in different cates common correlations in these three states, different
LL's can be obtained from Figs. 7 and 8, in which we plot from those in other LL's. We have marked the values of
the dependences of the excitation ga@nd parentage coef- G(1) corresponding to grouping of electrons intg;N pairs,
ficientsG(R) for a few smallest values d® on the value of On,x2(1)=(N— 1)~1. Clearly, the average number G
2l (ie., onv). The gapsi are taken from the. =0 GS's,  —1 pajrs decreases with increasingtBat seems to disagree
and we setd =0 when the GS hak#0. The CFGP's are  ith the prediction of Laughlin paired} = (2q,) ~* states
calculated for the absolute GS'’s bf electrons at given 2 ¢ a1l values ofg, between 1 and 4for Laughlin paired
(not the lowest energl =0 statg. _ states one should expegf1)~(N—1)"* independently of
The comparison of curves fof=10 and 12 confirms that 21). However, the number aR =1 pairs is roughly equal to
to minimize total interaction energy at amy electrons inter- N for 2| corresponding to the MR state at=2, which
acting through a pseudopotentil(R) avoid as much as suggests the Laughlin paired =1 state as an appropriate

description at this particular filling.

|@

2
2 AN
L
[ —

S ef

=0 o n=2 The observation thati(1) in the n=1 LL decreases
017 § 88 8 LI N=12 monotonically as a function of I2and that G(1)~(N
«% @ () © —1)"! at v=3 suggests that alN electrons form pairs at
g | { exactly v=3, but only a fraction of electrons pair upNg
\/\/ AN <3N andN;>0) whenv<32, and some pairs are replaced
0.0 - by largerv=1 clusters(e.g., by three-electron droplets each
7 St with 13=31—3) whenv>3. The breakup or clustering of
02" ‘”\% v . pairs can be understood from the behavior of the effective
o | el NS LS pseudopotentials describing interaction between electrons,
\ X‘Q&S pairs, and larger droplets and will be discussed in a subse-
0.1+ \ B, Sy quent publicatior??
| at \ ., In the n=2 LL, the average number dR=1 pairs is
(@ ~|@ ) larger than3;N, indicating formation of larger droplets of
00 6 20 o4 28 92 16 20 o4 28 92 16 20 24 28 a2 locally increased densitye.g., thev=1 stripes®%) sepa-
2| 2 2 rated from one another. As marked in Figf)8in the (fairly
o smal) N=12 electron system, G(1)~G,x3(1)=3(N
FIG. 8. The dependence of the excitation gagh,0 and the  _ 1)~1 negar the half-filling, which corresponds to four three-

coefficients of fract.ional parentagbfrom pair states at the smallest electron droplets.

values of the relative pair angular momentuRi=1, 3, 5, and 7

(d,e,h on 21, calculated for the ground statesif= 12 electrons on IX. CONCLUSION

a Haldane’s sphere, in the lowdst,d), first excited(b,e), and sec-

ond excited(c,f) Landau levels. For degenerate ground states ( Using exact-numerical diagonalization in Haldane’s
#0) the gap is set to zero. spherical geometry we have studied electron correlations
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near the half-filling of the lowest and excited LL's. We have

PHYSICAL REVIEW B 63 125312

Laughlin pairedv} =(2q,) ! states, we find no evidence

shown that the electrons interacting through a pseudopotefhat these are the actual Coulomb GS'’s. The two series of
tial V(R) generally avoid pair states corresponding to largefinite-size nondegenerate GS’s that we find in our numerical

and positive anharmonicity &f(R). We have shown that as
a result of different behavior of(R) in different LL’s, the

calculations and that extrapolate te=% and § for N— oo
occur at 2=3N—7 and3N+ 2. These values ofl2are dif-

correlations in the excited LL's are different than the Laugh-erent from both these of Laughlin-Jain GS'siat £ and 2

lin correlations in the lowest LL. This confirms different ori-
gin of the incompressibility of the=3 and4 GS'’s. In par-
ticular, correlations in the partially filled first excited (
=1) LL depend critically on the harmonic behavior of the

Coulomb pseudopotential at short range, and are destroyed
when the pseudopotential becomes either strongly superhar-

monic (as forn=0) or strongly subharmoni@s forn=2).
The Moore-Read incompressible statevat3 occurs at the
LL degeneracy(flux) given by 2=2N-3 (and 42=2N
+ 1 for its particle-hole conjugateThis value of 2 and the

in the n=0 LL, and those of the hypothetical Laughlin
paired states at3 =3 and 3.
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