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Abstract

The form of electron correlations in a partially filled degenerate Landau level (LL) is related to the behavior of the
anharmonic part of the interaction pseudopotential. Unlike in the lowest LL, the pseudopotential in the first excited LL is
harmonic at short range. As a result, the incompressible states in this LL have different correlations, occur at different filling
factors v, and cannot be described by a composite fermion model. The series of Laughlin-correlated states of electron pairs
is proposed at v=2+2/(g» + 2) with integer ¢. It includes Moore—Read v= % state and the v= % state. Despite coincidence
of the values of v, the latter state has different correlations than Laughlin state of single electrons at v = % and, in finite
systems, occurs at a different LL degeneracy (flux). © 2002 Elsevier Science B.V. All rights reserved.
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In the absence of another (kinetic) energy scale, cor-
relations in a degenerate Landau level (LL) are com-
pletely determined by the form of electron—electron
interaction [1]. Depending on the type of these cor-
relations, the series of incompressible ground states
(GS’s) may occur at the specific values of the fill-
ing factor v, the elementary excitations of these GS’s
may have specific (quasiparticle) character and, con-
sequently, the system (two-dimensional electron gas,
2DEG, in a high magnetic field) may exhibit specific
optical and transport properties.

For example, it turns out that the short-range char-
acter of the Coulomb repulsion in the lowest (n = 0)
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LL make the electrons maximally avoid those pair
eigenstates with smallest relative angular momenta
A = 1,3,5,... [2-4]. This tendency causes incom-
pressibility at the specific values of the filling factor
v, as well as the specific properties of the elementary
excitations of these incompressible GS’s [2,5,6]. The
avoidance of pair states with small Z can also be mim-
icked by a composite fermion (CF) transformation [7]
in which the “hard core” at Z < 2 p+1 is replaced by
an attachment of 2 p vortices or magnetic flux quanta
to each electron.

This type of correlations do not generally occur
in the excited LL’s because of different behavior of
the electron—electron repulsion. The condition neces-
sary for Laughlin correlations is that the interaction
pseudopotential [3], V'(Z), is super-harmonic at short
range [4,8], and the Coulomb pseudopotential in the
nth LL, Vé"), satisfies this condition only at # > 2n+1
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Fig. 1. Coulomb pseudopotentials in different LL’s (a) and model pseudopotentials Uy (b) calculated on Haldane sphere with 2/ = 25.

[4,8]. Consequently, Laughlin correlations in the nth
LL are not expected at v > (27 + 2)~!, and neither
will the CF picture be valid at these fillings. There-
fore, it is not surprising that the half-filled state in the
n=1LL (v= %) is incompressible [9,10], even though
for n=0 all even-denominator fractions are compress-
ible. It is less obvious that the correlations (and thus
the reason for incompressibility) at v = % and % are
different from those at v = % and %, and that the CF
model does not apply in the n =1 LL.

In this note, correlations in the n = 1 LL are stud-
ied numerically. The energy spectra and the coef-
ficients of fractional grandparentage (CFGP) [4,11],
@, for the lowest energy states are calculated. The
pair-correlation functions 9(2) for the low-energy
states are analyzed. The series of Laughlin-correlated
states containing electron pairs is proposed.

In our model [8], N electrons are confined on a
Haldane sphere [6], and the degeneracy of the nth LL,
gn = 21, + 1, is controlled by the strength 25 of the
magnetic monopole inside the sphere (/, =S + n).
The Coulomb matrix elements are calculated assuming
zero width of the 2DEG, and the inter-LL scattering
is neglected. All lengths and energies are given in the
units of A (magnetic length) and e?//. The many-body
states are labeled by the length (L) and projection (M)
of total angular momentum.

On a sphere, #=2/— L and the harmonic pseudopo-
tential Vy is linear in L(L + 1) [4]. Only those pseu-
dopotentials V' that decrease more quickly than Vy
with increasing # cause Laughlin correlations [4,8].
It is clear from Fig. 1(a) that V", the Coulomb pseu-
dopotential in the nth LL, is super-harmonic in the

entire range of # only for n = 0. To model differ-
ent behavior of V((:O) and V((:]) at short range, a model
pseudopotential shown in Fig. 1(b) can be used for
which U,(1)=1, U(Z = 5)=0, and U,(3)=xVu(3),
where V(3) is the “harmonic” value such that U, is
linear in L(L + 1) for # between 1 and 5. While U
gives similar many-body energy spectra to V((:O), the
(approximately) harmonic behavior of Vél) at # <5
is well reproduced by Uj.

A few n=1 Coulomb energy spectra are compared
with the spectra of U; in Fig. 2. The circles mark in-
compressible GS’s in each frame, identified as the v:%

(Moore—Read [10]) and v = % states. The similarity
of the corresponding Vél) and U, spectra (both very
different from the Véo) and U spectra — not shown)
confirms the fact that the essential feature of V, él) that
determines correlations in the n=1 LL is its harmonic
behavior at short range.

Further confirmation of the essential role of this har-
monicity comes from the comparison of CFGP profiles
(pair-correlation functions) %(£) for the low-energy
states, shown in Fig. 3. As an example, we display data
for the lowest-energy L = 0 states from the spectra of
Fig. 2 and the (not shown) analogous spectra for Véo)
and Uy (the latter correspond to different numbers of
quasiholes, QH, in Jain v = % state). Clearly, the cor-
relations obtained for the Coulomb interaction in the
n=0and 1 LL’s are very different for both one-half
and one-third filling, and they are very well repro-
duced by the model interactions Uy and Uj, respec-
tively. The main common feature of ¥(#) for n =0
is a strong minimum at # = 1 that can be viewed as
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Fig. 2. The N-electron energy spectra calculated on Haldane sphere with different 2/ for Coulomb interaction in the n =1 LL (a—c) and

for model interaction U; (d-f).
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Fig. 3. CFGP profiles of the lowest-energy N-electron states at L = 0, calculated on Haldane sphere with different 2/: (a—) Coulomb
interaction in the » = 0 LL compared to model interaction Up, and (d—f) Coulomb interaction in the » =1 LL compared to Uj.

a tendency for the electrons to maximally avoid this
most strongly repulsive pair state. Because of the sum
rules satisfied by CFGP’s [4]: (i) >_, %(#) =1 and
(i) sN(N = 1) >, L'+ DY) = L(L + 1) +
N(N —2)I(I + 1), where L' =21 — % and L is the
total N-electron angular momentum, the minimum at

A =1 causes maximum at # = 3. The harmonicity of
Vél) at 1 < # < 5 results in a different “prescription”
for the CFGP profile that minimizes total interaction
energy, E = %N(N —1)Y ", V()9(R), inthe n=1
LL. Namely, the total grandparentage from # =1 and
3 is minimized, yielding a maximum at # = 5.
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Fig. 4. Dependence of CFGP’s ¢ from pair states at # = 1,3, and 5, on the anharmonicity parameter x of the model pseudopotential U,,
calculated on Haldane sphere with different 2/ for the lowest-energy N-clectron states at L = 0. Symbols mark the values of ¢ for the

Coulomb pseudopotential in the n =0 and 1 LL’s.

The optimum pseudopotential U, to model
Coulomb correlations at # =0 or 1 can be found from
a dependence of the leading CFGP’s on x, shown in
Fig. 4 for the same three many-body eigenstates of
Fig. 3. Clearly, the abrupt reconstruction of Laughlin

. . 0)
correlations characteristic of V.~ and Uy occurs at

x =~ 1, and the correlations resulting for Vél) are best
reproduced by U, with x near this transition point. It
is noteworthy that ¥(1) ~ %(3) at x ~ 1, and that
the total number of # = 1 pairs, AN(N — 1)%(1),
is roughly equal to %N . This supports the idea of
electron pairing in the v = % state [10].

To identify the finite-size incompressible states in
the n =1 LL (and to rule out the same character of
the v=1 and 7 states that coincidentally occur at the
same filling of the n =0 and 1 LL’s in the thermo-
dynamic limit), in Fig. 5 we show the dependence of
the excitation gap from the L = 0 GS, 4, and of the
leading CFGP’s on 2/, calculated for N = 10 and 12.
At n =0, large gaps 4 occur only at those 2/ corre-
sponding to Laughlin or Jain GS’s at v= %, %, %, etc.,
and coincide with the downward cusps in %(1) and
upward peaks in 4(3). At n = 1, the gaps generally
occur at different 2/ than at #=0 and coincide with the
maxima of 4(5). The horizontal lines labeled “5 x 2”
and “6 x 2” show the values of 4(1) = (N — 1)~!
corresponding to the formation of %N =5 or 6 pairs
with Z = 1.

The facts that (i) %(1) ~ (N — 1)~! over certain
range of 2/ for n = 1 and (ii) Laughlin correlations
keeping electrons maximally separated from one an-
other no longer occur, suggest that electrons may in-

deed form # = 1 pairs in the n = 1 LL. Such pairs
would then keep far apart from one another due to the
super-harmonic behavior of Vé]) at larger #. Laugh-
lin pair—pair correlations can be formally introduced
by a composite boson (CB) transformation applied to
the (bosonic) pairs. The result is that incompressible
Laughlin paired states are expected at the effective
pair filling factors v, =(2¢,)~! with ¢, =1,2,3.,4,...,
that translate into the total electron filling factors of
v=2+2/q+2)=25 3 2 I .. [8]. On Hal-
dane sphere, these GS’s and their particle—hole conju-
gates are expected at 2/ = %N(qz +2)—(g2+ 1) and
2] = %N (g2 + 2) + 1, respectively. Remarkably, the
latter relation for g, =3 is the same as for the Moore—
Read (pfaffian) state [10], which therefore can be in-
terpreted as a Laughlin v, = é state of # =1 electron
pairs.

The incompressible GS’s for other values of ¢, have
not been confirmed numerically. However, an L =0
GS occurs for any N at 2/ = 3N — 7 (which gives
v=1 in the thermodynamic limit, but is different from
2/ =3N — 3 of the Laughlin v = % state). Also, its
particle—hole conjugate v= % state occurs in numerical
spectra at any (even) N and 2/ = %N + 2. Most likely,
less than %N pairs form in these states, and the Laugh-
lin pair—pair and electron—pair correlations occur in
such two-component plasma of Z=1 pairs and excess
unpaired electrons (in analogy to the two-component
Laughlin fluid of charged excitons and electrons [12]).
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Fig. 5. Dependence of the excitation gap (a), (c), (¢) and (g) and the leading CFGP’s (b), (d), (f) and (h) on 2/, calculated on Haldane
sphere for N = 10 (a—d) and 12 (e-h) electrons in the n =0 (a), (b), (¢) and (f) and n =1 (c), (d), (g) and (h) LL.
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