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Electron correlations in a partially �lled �rst excited
Landau level
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Abstract

The form of electron correlations in a partially �lled degenerate Landau level (LL) is related to the behavior of the
anharmonic part of the interaction pseudopotential. Unlike in the lowest LL, the pseudopotential in the �rst excited LL is
harmonic at short range. As a result, the incompressible states in this LL have di1erent correlations, occur at di1erent �lling
factors �, and cannot be described by a composite fermion model. The series of Laughlin-correlated states of electron pairs
is proposed at �=2+2=(q2 +2) with integer q2. It includes Moore–Read �= 5

2 state and the �= 7
3 state. Despite coincidence

of the values of �, the latter state has di1erent correlations than Laughlin state of single electrons at � = 1
3 and, in �nite

systems, occurs at a di1erent LL degeneracy (:ux). ? 2002 Elsevier Science B.V. All rights reserved.
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In the absence of another (kinetic) energy scale, cor-
relations in a degenerate Landau level (LL) are com-
pletely determined by the form of electron–electron
interaction [1]. Depending on the type of these cor-
relations, the series of incompressible ground states
(GS’s) may occur at the speci�c values of the �ll-
ing factor �, the elementary excitations of these GS’s
may have speci�c (quasiparticle) character and, con-
sequently, the system (two-dimensional electron gas,
2DEG, in a high magnetic �eld) may exhibit speci�c
optical and transport properties.
For example, it turns out that the short-range char-

acter of the Coulomb repulsion in the lowest (n= 0)
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LL make the electrons maximally avoid those pair
eigenstates with smallest relative angular momenta
R = 1; 3; 5; : : : [2–4]. This tendency causes incom-
pressibility at the speci�c values of the �lling factor
�, as well as the speci�c properties of the elementary
excitations of these incompressible GS’s [2,5,6]. The
avoidance of pair states with smallR can also be mim-
icked by a composite fermion (CF) transformation [7]
in which the “hard core” atR¡ 2p+1 is replaced by
an attachment of 2p vortices or magnetic :ux quanta
to each electron.
This type of correlations do not generally occur

in the excited LL’s because of di1erent behavior of
the electron–electron repulsion. The condition neces-
sary for Laughlin correlations is that the interaction
pseudopotential [3], V (R), is super-harmonic at short
range [4,8], and the Coulomb pseudopotential in the
nth LL, V (n)

C , satis�es this condition only atR¿ 2n+1
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Fig. 1. Coulomb pseudopotentials in di1erent LL’s (a) and model pseudopotentials Ux (b) calculated on Haldane sphere with 2l = 25.

[4,8]. Consequently, Laughlin correlations in the nth
LL are not expected at �¿ (2n + 2)−1, and neither
will the CF picture be valid at these �llings. There-
fore, it is not surprising that the half-�lled state in the
n=1 LL (�= 5

2) is incompressible [9,10], even though
for n=0 all even-denominator fractions are compress-
ible. It is less obvious that the correlations (and thus
the reason for incompressibility) at � = 7

3 and 8
3 are

di1erent from those at � = 1
3 and 2

3 , and that the CF
model does not apply in the n= 1 LL.
In this note, correlations in the n = 1 LL are stud-

ied numerically. The energy spectra and the coef-
�cients of fractional grandparentage (CFGP) [4,11],
G, for the lowest energy states are calculated. The
pair-correlation functions G(R) for the low-energy
states are analyzed. The series of Laughlin-correlated
states containing electron pairs is proposed.
In our model [8], N electrons are con�ned on a

Haldane sphere [6], and the degeneracy of the nth LL,
gn = 2ln + 1, is controlled by the strength 2S of the
magnetic monopole inside the sphere (ln = S + n).
The Coulombmatrix elements are calculated assuming
zero width of the 2DEG, and the inter-LL scattering
is neglected. All lengths and energies are given in the
units of � (magnetic length) and e2=�. The many-body
states are labeled by the length (L) and projection (M)
of total angular momentum.
On a sphere,R=2l−L and the harmonic pseudopo-

tential VH is linear in L(L + 1) [4]. Only those pseu-
dopotentials V that decrease more quickly than VH
with increasing R cause Laughlin correlations [4,8].
It is clear from Fig. 1(a) that V (n)

C , the Coulomb pseu-
dopotential in the nth LL, is super-harmonic in the

entire range of R only for n = 0. To model di1er-
ent behavior of V (0)

C and V (1)
C at short range, a model

pseudopotential shown in Fig. 1(b) can be used for
which Ux(1)=1, Ux(R¿ 5)=0, and Ux(3)=xVH(3),
where VH(3) is the “harmonic” value such that U1 is
linear in L(L + 1) for R between 1 and 5. While U0

gives similar many-body energy spectra to V (0)
C , the

(approximately) harmonic behavior of V (1)
C at R6 5

is well reproduced by U1.
A few n=1 Coulomb energy spectra are compared

with the spectra of U1 in Fig. 2. The circles mark in-
compressible GS’s in each frame, identi�ed as the �=5

2
(Moore–Read [10]) and � = 7

3 states. The similarity
of the corresponding V (1)

C and U1 spectra (both very
di1erent from the V (0)

C and U0 spectra — not shown)
con�rms the fact that the essential feature of V (1)

C that
determines correlations in the n=1 LL is its harmonic
behavior at short range.
Further con�rmation of the essential role of this har-

monicity comes from the comparison of CFGP pro�les
(pair-correlation functions) G(R) for the low-energy
states, shown in Fig. 3. As an example, we display data
for the lowest-energy L= 0 states from the spectra of
Fig. 2 and the (not shown) analogous spectra for V (0)

C
and U0 (the latter correspond to di1erent numbers of
quasiholes, QH, in Jain �= 2

5 state). Clearly, the cor-
relations obtained for the Coulomb interaction in the
n = 0 and 1 LL’s are very di1erent for both one-half
and one-third �lling, and they are very well repro-
duced by the model interactions U0 and U1, respec-
tively. The main common feature of G(R) for n = 0
is a strong minimum at R = 1 that can be viewed as
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Fig. 2. The N -electron energy spectra calculated on Haldane sphere with di1erent 2l for Coulomb interaction in the n = 1 LL (a–c) and
for model interaction U1 (d–f).
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Fig. 3. CFGP pro�les of the lowest-energy N -electron states at L = 0, calculated on Haldane sphere with di1erent 2l: (a–c) Coulomb
interaction in the n = 0 LL compared to model interaction U0, and (d–f) Coulomb interaction in the n = 1 LL compared to U1.

a tendency for the electrons to maximally avoid this
most strongly repulsive pair state. Because of the sum
rules satis�ed by CFGP’s [4]: (i)

∑
R G(R) = 1 and

(ii) 1
2N (N − 1)

∑
R L

′(L′ + 1)G(R) = L(L + 1) +
N (N − 2) l(l + 1), where L′ = 2l − R and L is the
total N -electron angular momentum, the minimum at

R=1 causes maximum at R=3. The harmonicity of
V (1)
C at 16R6 5 results in a di1erent “prescription”

for the CFGP pro�le that minimizes total interaction
energy, E= 1

2N (N −1)
∑

R V (R)G(R), in the n=1
LL. Namely, the total grandparentage from R=1 and
3 is minimized, yielding a maximum at R= 5.
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Fig. 4. Dependence of CFGP’s G from pair states at R= 1; 3; and 5, on the anharmonicity parameter x of the model pseudopotential Ux ,
calculated on Haldane sphere with di1erent 2l for the lowest-energy N -electron states at L = 0. Symbols mark the values of G for the
Coulomb pseudopotential in the n = 0 and 1 LL’s.

The optimum pseudopotential Ux to model
Coulomb correlations at n=0 or 1 can be found from
a dependence of the leading CFGP’s on x, shown in
Fig. 4 for the same three many-body eigenstates of
Fig. 3. Clearly, the abrupt reconstruction of Laughlin
correlations characteristic of V (0)

C and U0 occurs at
x ≈ 1, and the correlations resulting for V (1)

C are best
reproduced by Ux with x near this transition point. It
is noteworthy that G(1) ≈ G(3) at x ≈ 1, and that
the total number of R = 1 pairs, 1

2N (N − 1)G(1),
is roughly equal to 1

2N . This supports the idea of
electron pairing in the �= 5

2 state [10].
To identify the �nite-size incompressible states in

the n = 1 LL (and to rule out the same character of
the �= 1

3 and 7
3 states that coincidentally occur at the

same �lling of the n = 0 and 1 LL’s in the thermo-
dynamic limit), in Fig. 5 we show the dependence of
the excitation gap from the L = 0 GS, �, and of the
leading CFGP’s on 2l, calculated for N = 10 and 12.
At n = 0, large gaps � occur only at those 2l corre-
sponding to Laughlin or Jain GS’s at �= 2

3 ,
2
5 ,

1
3 , etc.,

and coincide with the downward cusps in G(1) and
upward peaks in G(3). At n = 1, the gaps generally
occur at di1erent 2l than at n=0 and coincide with the
maxima of G(5). The horizontal lines labeled “5× 2”
and “6 × 2” show the values of G(1) = (N − 1)−1

corresponding to the formation of 1
2N = 5 or 6 pairs

with R= 1.
The facts that (i) G(1) ≈ (N − 1)−1 over certain

range of 2l for n = 1 and (ii) Laughlin correlations
keeping electrons maximally separated from one an-
other no longer occur, suggest that electrons may in-

deed form R = 1 pairs in the n = 1 LL. Such pairs
would then keep far apart from one another due to the
super-harmonic behavior of V (1)

C at larger R. Laugh-
lin pair–pair correlations can be formally introduced
by a composite boson (CB) transformation applied to
the (bosonic) pairs. The result is that incompressible
Laughlin paired states are expected at the e1ective
pair �lling factors �2=(2q2)−1 with q2=1; 2; 3; 4; : : : ,
that translate into the total electron �lling factors of
� = 2 + 2=(q2 + 2) = 8

3 ,
5
2 ,

12
5 ,

7
3 ; : : : [8]. On Hal-

dane sphere, these GS’s and their particle–hole conju-
gates are expected at 2l= 1

2N (q2 + 2)− (q2 + 1) and
2l = 1

2N (q2 + 2) + 1, respectively. Remarkably, the
latter relation for q2 =3 is the same as for the Moore–
Read (pfaRan) state [10], which therefore can be in-
terpreted as a Laughlin �2 = 1

6 state of R=1 electron
pairs.
The incompressible GS’s for other values of q2 have

not been con�rmed numerically. However, an L = 0
GS occurs for any N at 2l = 3N − 7 (which gives
�= 7

3 in the thermodynamic limit, but is di1erent from
2l = 3N − 3 of the Laughlin � = 1

3 state). Also, its
particle–hole conjugate �= 8

3 state occurs in numerical
spectra at any (even) N and 2l= 3

2N +2. Most likely,
less than 1

2N pairs form in these states, and the Laugh-
lin pair–pair and electron–pair correlations occur in
such two-component plasma ofR=1 pairs and excess
unpaired electrons (in analogy to the two-component
Laughlin :uid of charged excitons and electrons [12]).
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Fig. 5. Dependence of the excitation gap (a), (c), (e) and (g) and the leading CFGP’s (b), (d), (f) and (h) on 2l, calculated on Haldane
sphere for N = 10 (a–d) and 12 (e–h) electrons in the n = 0 (a), (b), (e) and (f) and n = 1 (c), (d), (g) and (h) LL.
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