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The stability of the magnetization in Lieb graphene quantum dots
(GQD) against disorder is studied. Such systems exhibit the degen-
erate shell of edge states in the middle of the energy gap occupied
by spin polarized electrons. Disorder affects the energy spectrum
and leads to the removal of the degeneracy, and in a consequence
the loss of the magnetization. We find that there is a critical value
of disorder strength over which the magnetization starts dropping.
We first consider GQDs with different shapes and edge termination
and compare the effect of bulk and edge disorder. We find that
edge disorder affects states in the vicinity of the Fermi level, while
the bulk disorder affects also the states far away from it. We next
focus on Lieb GQDs with a single zigzag edge. The stability of the
ferromagnetic order against disorder strength is analyzed for struc-
tures with a different edge length. The probability of getting max-
imal spin polarization is determined.

� 2013 Elsevier Ltd. All rights reserved.
1. Introduction

Since its exfoliation in 2004 [1], graphene continuously astounds the scientific community from
point of view of pure theory as well as possible applications [2–6]. In graphene, low energy quasi-par-
ticles behave like massless Dirac fermions what gives opportunity to study relativistic effects [2,3]. For
applications in electronics, particularly promising are the very high mobility of carries in graphene,
optical transparency, good quality of crystal and planar structure [4–6]. The lack of the band gap in
the band structure of graphene limits these applications. There are several proposition of creating
the energy gap in graphene [6]. One possibility is to create graphene nanostructures by carving
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graphene into desired shapes [7–19]. The energy gap opens due to quantum confinement effect. A
variety of graphene nanostructures have yet been studied, including graphene nanoribbons (GNR)
[8,9], graphene quantum dots (GQD) and rings (GQR) with different shapes: triangular, hexagonal,
rectangular, and randomly shaped [10–22]. Independently of the shape, the energy gap opens. It
was shown that not only shape but also edge termination determines the electronic properties of
graphene nanostructures. In particular, zigzag type of edge leads to an appearance of edge states in
a vicinity of the Fermi energy, and structures can reveal the magnetic order due to the polarization
of spins of electrons occupying these states [8,9,13–17]. The magnetization is related to the presence
of the degenerate shell of edge states in the middle of the energy gap. The degeneracy of the shell is
determined by an imbalance between numbers of atoms belonging to two sublattices of a graphene
bipartite honeycomb lattice. According to Lieb’s theorem regarding the total spin of the ground state
in the Hubbard model for a bipartite lattice system with imbalanced number of two types of atoms,
S = (NA � NB)/2, where NA and NB are the numbers of two types of atoms. This type of GQDs can be
called Lieb’s GQD.

In any real material, the perfect lattice is altered by disorder. Among disorder types in graphene-
based structures one can list vacancies, adsorbates, impurities, topological lattice defects (e.g. penta-
gons and heptagons), and randomly removed atoms from the edge – edge roughness due to problems
with a fabrication with atomic precision. Also, graphene sheets usually are not perfectly flat; a ten-
dency to stabilize the structure by forming ripples is observed [23]. Moreover, additional sources of
disorder appear when graphene sheet is deposited on a substrate. An interaction with a substrate
causes displacement of atoms [24]. The charge traps and charged impurities in a substrate are the
source of random electrostatic potentials. Experiments show that in epitaxial graphene short range
defects are present, while there are very rare in suspended graphene [25].

Disorder in graphene can be modeled in many ways, including changes of values of the hopping
integral in a tight-binding model corresponding to a change of bond lengths [24], using Anderson
model to study short-range scattering centers [26], using long-range potentials to model charged
impurities [27,28], or introducing random vector potentials corresponding to ripples [29]. It is ex-
pected that the effect of disorder is stronger close to edges comparing to the center of nanostructures,
thus different values of disorder for edge and center atoms are taken. Methods allowing investigating
the effect of disorder are described in several review articles, e.g. see Refs. [7,30–32].

The effect of disorder on electronic properties of graphene nanostructures was intensively studied
[33–39]. For graphene nanoribbons, the research was done from perspective of transport properties:
the conductivity and mean free path were calculated [33]. Disorder was investigated using Anderson
model in a bulk form. Changes of the density of states (DOS) and localization length of wave functions
were analyzed. DOS were mostly affected around van Hove singularities and in the vicinity of the Fer-
mi energy where peaks corresponding to edge states appear. It was taken into account that edges may
be more prone to disorder. Edge disorder was modeled in two ways: using Anderson disorder placed
only at the edge lattice sites or randomly removing selected atoms from the edge. Both models lead to
quasi-one-dimensional Anderson localization [33]. The effect of disorder was also studied in graphene
quantum dots. The energy level statistics, the transition to quantum chaos, and transport properties
were investigated [34–36]. The stability of edge states in a presence of edge roughness in large
GQD, consisting of up to 75,000 atoms, was considered [37,38]. The effect of bulk and edge Anderson
disorder, and random magnetic fluxes on electronic and transport properties in electrostatically in-
duced circular graphene quantum dots were investigated. The peaks of density of states, which corre-
spond to bound states remained sharp only in a case of edge Anderson disorder, and were broadened
and disappeared when the disorder strength was sufficiently high [39].

Disorder affects the energy spectra of GQD, thus also the degenerate shell in Lieb’s GQDs. Because
of possible removal of the degeneracy, an important question arises regarding the influence of disor-
der on the magnetic moment. In this work, we analyze the stability of the magnetization of Lieb GQDs
as a function of the short-range disorder strength using Anderson model within tight-binding and
mean-field Hubbard models. We first investigate the effect of disorder on the density of states for
GQDs with different shapes and edge termination. A comparison between bulk and edge disorder is
presented. We next focus on Lieb GQDs with a single zigzag edge. We analyze the stability of the mag-
netization as a function of the disorder strength. We consider structures with different zigzag edge
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lengths and determine the probability of finding the ground state with a given spin. The critical value
over which the spin polarization drops is determined.

2. Method

The electronic properties of GQDs within a single-particle approximation can be investigated using
tight-binding model and the magnetic properties of Lieb GQDs can be described using Hubbard model
in a mean-field approximation. The results obtained by above methods are in good agreement with
density functional theory calculations [13,21], assuming that the edge reconstruction is not present.
The edge reconstruction in triangular Lieb GQDs was shown to destroy the magnetization due to an
increase of the width of the degenerate shell [21]. Tight-binding model is described by the following
Hamiltonian
H0 ¼
X

ir
eicirþcir �

X

i;j>r
tcirþcjr �

X

hhi;jiir
t2cirþcjr; ð1Þ
where cþir (cir) are a creation (annihilation) operator of an electron at lattice site i with spin r, ei is site-
dependent on-site energy, t and t2 are hopping integrals to the nearest and next nearest neighbors,
respectively. In our calculations, for systems in the absence of disorder following values are taken:
t = 2.84 eV, t2 = 0.1 eV, ei = 0 [6]. Disorder is modeled in the Anderson form taking ei from a box distri-
bution, an uniform probability from the range [�W/2, W/2]. We consider values of W from 0.5 to 2 eV
(W/t � 0.18–0.7). We investigate two cases. First, we apply the random onsite energy variation only to
atoms in the vicinity of the edges. This vicinity is defined as all the atoms having less than six second-
near neighbours, which is one zigzag line for a zigzag edge or two dimer for an armchair one. For other
atoms ei = 0. We will refer to this form of disorder as edge disorder. The second case is when the ran-
dom variation is applied with the same W to all the atoms. The vicinity of the edges is also included, so
this case makes no distinction between the edge and the middle of the structure. We will refer to this
as bulk disorder. In order to investigate the effect of disorder independent of the specific realization,
we create 5000 realizations of Hamiltonian given by Eq. (1)with random values of on-site energies.
The final DOS is obtained by averaging energy spectra over these 5000 realizations. We compare
the effect of disorder on GQDs with different shape and edge termination, and also study the effect
of disorder on a single zigzag edge.

For calculations of magnetization, Hubbard model in a mean-field approximation is used, with
Hamiltonian
H ¼ H0 þ U
X

i

n̂i#hn̂i"i þ n̂i"hn̂i#i; ð2Þ
where H0 is given by Eq. (1), n̂i" is the electron number operator for spin up at ith lattice site, and
U = 1.1t. The average values of spin densities on sites are calculated summing over all occupied states.
A self-consistent procedure is used and after convergence process, total energies corresponding to dif-
ferent total spins are found, and the ground state total spin is determined. For each value of the dis-
order strength 500 realizations of self-consistent calculations are performed, and the probability of
finding the ground state with a given total spin is calculated.

3. Results

Before we make an analysis of the stability of the magnetization in Lieb GQDs, we first compare the
effect of edge and bulk disorder on electronic properties of GQDs. In Fig. 1, three graphene quantum
dots with different shapes and edge termination consisting of around N�1000 atoms are considered:
armchair hexagon with N = 1014 atoms in Fig. 1(a) and (b), zigzag hexagon with N = 1014 atoms in
Fig. 1(c) and (d) and zigzag triangle with N = 1021 atoms in Fig. 1(e) and (f). We compare density of
states (DOS) obtained by summing over discrete energy levels approximated by using Gaussian func-
tions with a standard deviation r = 0.16 eV. In the absence of disorder, DOS of all three structures look
similarly to that for graphene, with characteristic van Hove singularities near energy E = ±t [6]. All
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Fig. 1. Comparison of DOS under influence of bulk and edge disorder with W = 0.5–2 eV (W/t � 0.18–0.7), for three GQD with
different shapes and edge termination. In order to obtain DOS, each energy level is replaced by a Gaussian function with a
standard deviation r = 0.16 eV. For disordered GQD, the result is averaged over 5000 configurations. (a), (c) and (e) show the
results for the edge disorder, and (b), (d) and (f) – for bulk disorder. (a and b) armchair hexagon with 1014 C atoms. (c and d)
zigzag hexagon with 1014 C atoms. (e and f) zigzag triangle with 1021 C atoms. GQD pictures in the insets are smaller dots of
the same type in order to make edge details resolvable. The DOS around van Hove singularities or the Fermi energy are enlarged.
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systems have energy gaps around the Fermi energy due to size quantization effects but they are not
visible in Fig. 1 due to an overlap of Gaussian functions used to plot DOS. Magnitudes of the energy
gaps are: in armchair hexagon Egap = 0.57 eV, zigzag hexagon Egap = 0.03 eV, and zigzag triangle is
about Egap = 1.08 eV. For structures with zigzag edges instead of vanishing density of states at the Fer-
mi energy EF = 0, there is an extra peak related to the presence of edge states, see Fig. 1(c)–(f). The edge
states are responsible for the smallest value of the energy gap in zigzag hexagon. The peak at the Fermi
energy is higher for zigzag triangle comparing to zigzag hexagon. Zigzag triangle has non-balanced
number of two types of atoms in a honeycomb graphene lattice, which leads to an appearance of
zero-energy degenerate edge states. The number of zero-energy states in the degenerate shell equals
to the sublattice imbalance [20]. We note that these states have energy perfectly E = 0 only in a tight-
binding model within a nearest neighbors approximation, for a Hamiltonian given by Eq. (1) with a
neglected last term. The degeneracy is slightly lifted when the next-neighboring terms are included.
Similarly, the van Hove singularities are perfectly at E = ±t only in the nearest neighbors approxima-
tion. When the disorder is present in the system, DOS slightly changes for all considered structures.
DOS for the armchair hexagon is strongly affected around the van Hove singularities only by bulk dis-
order, while the effect of edge disorder is almost invisible, see Fig. 1(a) and (b). The same situation is
also observed for van Hove singularities of other GQDs, see Fig. 1(c–f). This indicates that for this re-
gion of DOS the changes come mostly from the disorder in the middle of the structure. On the other
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hand, for structures with zigzag edges, the effects of bulk and edge disorders are also observed in a
vicinity of the Fermi energy, see Fig. 1(c–f). The peaks around the Fermi energy related to the edge
states are broadened, which is not observed for armchair hexagon because there are no states local-
ized at the edges. The similarity of bulk and edge disorder effect in the vicinity of Fermi level indicates
that for this region of DOS only the disorder in the vicinity of edge gives an important contribution
(note that for bulk disorder the edges are also included, because the variation of onsite energy is ap-
plied to every atom). The reason is the localization of the zero-energy states at the edges. We remark
that, besides from the sharp DOS peaks (edge states and van Hove singularities), also other regions of
the spectrum are affected, not shown here. This becomes visible for smaller half-width of the Gaussi-
ans used to plot DOS. The results for bulk disorder in these GQDs are similar to the results for bulk
disorder in nanoribbons [33]. Above results show that in order to study the effect of disorder on
low energy electronic properties, around Fermi energy, including the degeneracy responsible for the
magnetic properties, only edge disorder has to be considered.

In order to understand the role of disorder better, we investigate a structure with a single zigzag
edge with different lengths. We have a freedom of choosing the shape and size of the considered struc-
ture with a given number of zero-energy states localized at a single zigzag edge, as long as following
conditions are satisfied: (i) a global imbalance between the number of two types of atoms is given –
changing the imbalance would lead to increase or decrease of the number of zero-energy states, (ii)
there is only one zigzag edge – when more zigzag edges appear, the localization of the degenerate
states around a single zigzag edge is not always ensured. We also note that, when the system contains
large number of atoms, the energy gap closes and the degenerate shell of edge states is not well sep-
arated from the rest of the spectrum. Satisfying above conditions, we consider a pentagonal geometry
with four armchair edges and one zigzag edge at the bottom. While such system can be difficult to
fabricate, we consider it only in order to analyze disorder effects on a single zigzag edge, and our con-
siderations should be valid for an entire class of Lieb GQDs. The lengths of armchair edges can change
the total number of atoms, and in a consequence the magnitude of the energy gap, but cannot influ-
ence the degenerate edge states localized on a zigzag edge. The number of the degenerate states is
determined only by the length of the zigzag edge, which can be written as
Fig. 2.
(N = 26
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; ð3Þ
Comparison of energy spectra for a pentagonal quantum dot with one zigzag edge of length Nedge = 19 edge atoms
4 atoms in a whole structure) with and without disorder for one of the 500 studied realization of random on-site
s. The upper inset shows spin density for non-disordered and disordered dot for W/t = 0.35 – both densities are almost
l. Lower inset shows Hubbard spectrum for the dot with disorder – without disorder the plot is qualitatively similar. The
d empty triangles correspond to occupied and empty states. Red triangles are spin up states, while the green ones are

wn states. Black line indicates the Fermi level. (For interpretation of the references to colour in this figure legend, the
is referred to the web version of this article.)
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where Nedge is the number of edge atoms (i.e. having two nearest neighbors) on the zigzag edge. We
note that when the left hand side of Eq. (3) gives noninteger value, more than one zigzag edge has to
appear in the structure, and the degenerate states are not solely localized on one zigzag edge, but dis-
tributed over all zigzag edges. Thus, we concentrate on the lengths when Nedge � 1 is a multiply of 3. In
Fig. 2 the tight-binding energy spectra obtained by diagonalizing Hamiltonian given by Eq. (1) are
compared for the structure consisting of N = 264 atoms and Nedge = 19 with and without disorder.
According to Eq. (3), there are Ndeg = 6 degenerate edge states. They are clearly separated from the rest
of the spectrum by Egap = 0.65 eV gap. Although the energy gap decreases with system size, for the
structure containing N = 966 atoms, Egap = 0.27 so the degenerate shell is still well-separated from
the rest of the spectrum. The disorder strength is chosen as W � 0.94 eV (W/t = 0.33). It increases
the dispersion of the degenerate states, but does not affect their total charge densities, obtained by
summing over charge densities of all degenerate states, shown in the upper inset in Fig. 2, for the sys-
tem with and without disorder - both densities are identical.

For the charge neutral system, all states below the Fermi level are doubly occupied by electrons
with opposite spins, and the degenerate shell is half-filled. Using the mean-field Hubbard Hamiltonian
given by Eq. (2) we obtain that a spin gap appears, shown in the lower inset in Fig. 2. All the degen-
erate states are filled by spin-down electrons and total spin of the ground state S = 3. For non-disor-
dered structure, this result is in agreement with Lieb’s theorem [40], regarding the total spin of the
ground state in the Hubbard model for a bipartite lattice system with imbalanced number of two types
of atoms, S = (NA � NB)/2, where NA and NB are the numbers of two types of atoms and for considered
system NA � NB = 6. We want to examine the stability of the magnetic order against disorder on a sin-
gle zigzag edge. The contribution to the magnetic moment comes from the degenerate states. All these
states are localized near the zigzag edge. As long as the graphene quantum dot has only one zigzag
edge, whose length is fixed, and the zero-energy shell is well separated from the rest of spectrum,
magnetic properties are not changed when shape and size of GQD varies. When more zigzag edges ap-
pear in a structure, the degenerate states are distributed over all of them. We do not consider such
situation here; however, we can expect that this can lead only to quantitative difference comparing
to results presented in this work. We also note that, similarly to the problem considered here, an influ-
ence of the dispersion of degenerate edge state on the edge magnetism at graphene/graphane inter-
faces was investigated by Schmidt and Loss in Ref. [41].

We investigated the effect of disorder on four structures with different zigzag edge lengths, and in a
consequence a number of the degenerate states from Ndeg = 3 to Ndeg = 6. For each value of disorder,
500 realizations of different disorder configurations are created, and each time total spin of the ground
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Fig. 3. A probability that the ground state has a given spin, for a structure with a zigzag edge consisting of Nedge = 19 atoms as a
function of the disorder strength W/t. The results are obtained using mean-field Hubbard model, with 500 realizations of
disorder for each W/t value. For spins S > 3, the probability is zero in all the W/t range.
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state is determined. The probability of getting a given total spin is obtained by averaging over all these
realizations. The results are shown in Fig. 3 for the structure with Ndeg = 6 degenerate states in the en-
ergy spectrum. Without disorder, according to Lieb’s theorem the total spin is S = 3, that means all
Ndeg = 6 degenerate states are filled by spin polarized electrons. Increasing disorder up to value W/
t = 0.45 does not affect the spin polarization – maximal polarization of electrons from the degenerate
shell occurs with a probability equal to 1. Around W/t = 0.45 this probability start dropping, where the
probability of getting spin S = 2 as the ground state increases. Around W/t = 0.76, the probabilities of
maximal spin polarization S = 3 and S = 2 are equal. For further increase of the disorder, the ground
state is expected to have total spin S = 2, and also lower values of total spins, and the probability of
getting maximal spin polarization vanishes. We note that the total spins S > 3 need not to be investi-
gated, because this requires exciting the electron from zero-energy shell to a higher level, which is
energetically expensive. The calculation for S = 4 was done, resulting in zero probability in all the
investigated range of disorder strength. Therefore, also the higher spins are improbable. For structures
with a different length of zigzag edge, similar behavior is observed, the highest possible total spin va-
lue is the one given by Lieb’s theorem. A maximal value of disorder strength to get the probability
equal to 1 for maximal spin polarization oscillates around W/t � 0.45, with W/t � 0.5 for the system
with Ndeg = 4, and W/t � 0.39 for the system with Ndeg = 5. Thus, the ferromagnetic order is quite stable
against disorder for all consider structures in a wide range of disorder strength, regardless of the edge
length, while always at the end sufficiently strong disorder destroys the magnetization.

We also compare the effect of bulk and edge disorder. Both types of disorder give similar results.
For a system with Ndeg = 3, the disorder strength where the maximal polarization probability drops
is similar, although the drop itself is slightly more abrupt. For Ndeg = 4, the critical strength is W/
t � 0.45 in bulk case and W/t � 0.5 in edge case. The differences are related to the fact that the edge
states responsible for the magnetic order are not perfectly localized at the zigzag edge. Therefore,
although the main affect on the magnetization loss comes from the edge disorder, disorder on other
atoms also contributes.

4. Conclusion

We investigated the stability of the magnetization in Lieb GQDs against disorder. We analyzed
structures with a single zigzag edge and different edge lengths. A large interval of disorder strength,
below which the probability of getting maximal spin polarization is equal to 1, was shown. The loss of
the magnetization for a sufficiently strong disorder in all studied systems was observed. We also com-
pared the effect of bulk and edge disorder on DOS in GQDs. Bulk disorder changed DOS around van
Hove singularities, while edge disorder influenced the vicinity of the Fermi energy where peaks cor-
responding to edge states are present.
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