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1. — Introduction

In these three lectures we will try to give a somewhat deeper understanding of con-
cepts commonly used to interpret experimental data on the quantum Hall effect. Some
of the ideas presented here are neither commonly used nor commonly appreciated by
active researches and by referees for major journals. In particular, we hope to make
clear why the Chern-Simons (CS) mean-field (MF) approximation correctly predicts the
structure of the lowest band of energy states for any value of the applied magnetic field
B, despite introducing an energy scale that is large but totally irrelevant to the deter-
mination of that structure. We demonstrate that by adding the CS flux to each electron
diabatically (the way Laughlin originally created Laughlin quasiparticles (QPs) using
his imaginary infinitesimal solenoid) instead of via a gauge transformation, no change in
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particle statistics results for any value of the added flux, but Laughlin correlations among
the resulting composite fermions (CFs) arise automatically. (CFs are electrons together
with their attached CS flux tubes.) The equivalence of CFs and Laughlin correlations is
important to realize.

The pseudopotential V(L'), i.e. the energy of interaction of a pair of electrons, each
with angular momentum [ on a Haldane spherical surface, depends on the total pair
angular momentum L' = 2] — R, where R, called the relative angular momentum of
the pair, must be an odd integer. A very useful but largely unnoticed theorem on pair
angular momentum can be used to show that a harmonic pseudopotential of the form
Vu(L') = A+ BL/(L' + 1), where A and B are constants, introduces no correlations.
For a harmonic potential the energy E, (L) of every total angular momentum multiplet
lIV; La) is the same for every multiplet that has the same value of L. This means that
any linear combination of multiplets with the same value of L has the same energy.
Laughlin correlations occur only for superharmonic pseudopotentials in which AV/(L') =
V(L'y — Vi (L') is positive, so that large values of L' (and large repulsion) are avoided.
The pseudopotential for higher Landau levels (LLs) is not superharmonic at the largest
value of L' (or at the smallest value of R, R = 1). Because of this fact, Laughlin
correlations do not occur for filling factors satisfying 8/3 > v > 7/3. Instead, electrons
tend to form pairs with the smallest allowed size in order to avoid states with large pair
amplitude at R = 3.

The composite fermion hierarchy of condensed states was based on the reapplication
of the CS flux attachment to QPs in partially filled CF shells. It predicted (as did
the Haldane hierarchy scheme) condensed states at all fractions with odd denominators.
However, it was based on the CF picture being applicable at every level of the hierarchy.
The residual interactions between QPs, Vigp.qp, have been obtained from numerical
studies. For small values of R, Vgp.qp(R) is known reasonably up to an overall constant
(which has no effect on the nature of the correlations). The nature of the ground state
is determined by short-range interactions (i.e. at small values of R or small separations
between the interacting particles). Because of this fact numerical results for small systems
describe the essential correlations quite well for systems of any size. Because Vgp.qp(R) is
not superharmonic at all values of R, Laughlin correlations are sometimes forbidden. This
results in the absence of Laughlin-correlated QP daughter states and of condensed states
at certain values of the electron filling factor like v = 4/11 and 4/13. The observation
of condensed states at these and other unexpected filling factors immediately suggests
pairing of the CF QPs similar to the pairing of electrons in higher LLs. This pairing of
CF )Ps leads to a completely novel set of incompressible states involving new QPs which
act like bound states of the CI excitations despite the repulsive interaction between CFs.

The main thing that we hope you take away from these lectures is that, despite the
truly beautiful work by Laughlin and extensions of it by many outstanding scientists
(Halperin, Haldane, Wilczek, Schrieffer, Kivelson, Read, Girvin, MacDonald, Jain, Frad-
kin, Morf, Chakraborty, Das Sarma, and many others) there are always new ways of
looking at problems and deeper insights that can lead to interesting new results.

Lines the ctantiim Hall effect involves electrons movine on a two-dimensional (2D)
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surface in the presence of a perpendicular magnetic field, we will begin with a brief reviey
of this textbook problem.

2. — Electrons confined to a two-dimensional surface in a perpendicular mag
netic field

The Hamiltonian describing the motion of a single electron confined to the z-y plan
in the presence of a dc magnetic field B = B# is simply H = (2u)~[p + (e/c)fl‘(?"‘)]z
The vector potential J(F) in the symmetric gauge is given by /I(F) =(1/2)B(—yz+xy)
We use &, g, and £ as unit vectors along the Cartesian axes. The Schrodinger equatior
(H — E)U(7) = 0 has eigenstates [1]

(1) ‘ll'n.'rn.{rz (]5) T ”nd)u'nm‘{r)

(2) E,m = éﬁwc(Zn +14+m+ |m|).

The radial function u(r) satisfies the differential equation

d2 d:
(3) EZ + 7! ﬁ — (mPa ! + 2% —)u=0,

where 22 = (eB/2he)r? and € = (4E/hw.) — 2m. The radial wave functions can be
expressed in terms of associated Laguerre polynomials as

(4) Unm(z) = 2™ exp [a %Q}Llnm(xz).

Here LI™(2?) is independent of z and L™ (22) o (|m| + 1 — 2?). From eq. (2) i
is apparent that the spectrum of single-particle energies consists of highly degenerate
levels with energy E taking on the values (1/2)hw., (3 / 2)hwe, . ... These levels are callec
Landau levels; the lowest LL has n = 0 and m = 0, —1,—2, ..., and its wave function car
be written Wo,, = zI™ exp[—|2|2/4)\?], where 2 stands for re~*® and A\* = hc/eB. For ¢
finite-size sample of area A = wR?, the number of single-particle states in the lowest LI
is given by Ny = BA/¢q, where ¢g = he/e is the quantum of flux. The filling factor 1
is defined as N/Ny, so that v~! is simply equal to the number of flux quanta of the dc
magnetic field per electron.

3. — Integer quantum Hall effect

When v is equal to an integer, there is an energy gap (equal to fiw.) between the
filled states and the empty states. This makes the non-interacting electron system in.
compressible, because an infinitesimal decrease in the area A can be accomplished only
at the expense of promoting an electron across the energy gap and into the first unoc:
cupied LL. This incompressibility is responsible for the integral quantum Hall effect [2]
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To understand the minima in the diagonal resistivity p., and the plateaus in the Hall
esistivity puy, it is necessary to understand that each LL, broadened by collisions with
lefects and phonons, must contain both extended states and localized states [3]. The
sxtended states lie in the central portion of the broadened LL, and the localized states
1 the wings. As the chemical potential { sweeps through the LL (by varying either B
or the particle number N), zeros of p,., (at T' = 0) and flat plateaus of p,, occur when
~ lies within the localized states.

A many-particle wave function at filling factor v = 1 can be constructed by antisym-
metrizing the product function which places one electron in each of the N states with
) < |m| < Ny — 1. It is straightforward to demonstrate that the many-particle wave
unction is, for v =1,

|21/
Zij CXp *ZW ;

5) 0(1,2,...,N) =
(i.) [

where the product is over all pairs {i, 7).

1. — Fractional quantum Hall effect

When the filling factor v is smaller than unity, the standard approach of placing
N particles in the lowest-energy single-particle states is not applicable, because more
legenerate states than the number of particles are present in the lowest LL. Laughlin [4]
1sed remarkable physical insight to propose the wave function

‘ : Bl
(b) \L’l/n(l; 2; on ”‘fV) . H z;r?’ exp 17_ Z 4x2 [’
]

(2.9)

for filling factor v = 1/n, where n is an odd integer. The Laughlin wave function has
the properties that i) it is antisymmetric under interchange of any pair of particles as
ong as n is odd, ii) particles stay farther apart and have lower Coulomb repulsion for
n > 1, and iii) because the wave function contains terms with 2z for 0 < m < n(N —1),
Ng — 1, the largest value of m in the LL, is equal to n(N — 1) giving v = N/Ny — 1/n
for large systems in agreement with experiment [5]. Laughlin also proposed the form of
the QP excitations, and evaluated the ground-state energy and the gap for creation of a
quasi-electron(QE )—quasi-hole(QH) pair.

5. — Numerical studies

Remarkable confirmation of Laughlin’s hypothesis was obtained by exact diagonal-
zation [6] of the interaction Hamiltonian within the Hilbert subspace of the lowest LL.
Although real experiments are performed on a 2D plane, it is more convenient to use a
spherical 2D surface for numerical diagonalization studies. The N electrons are confined
o a spherical surface of radius R. At the center of the sphere is a maenetic monopole of
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strength 2Q¢g, where 2@ is an integer. The radial magnetic field is B = (47 R?)~12Q¢q 7.
The single-particle states are called monopole harmonics and denoted by |@, 1, m), though
we will frequently omit the label ). The states
the square of the angular momentum and its z-component with eigenvalues [(l + 1)
and m, respectively, as well as of Hy, the single-particle Hamiltonian, with energy
(hwe/2Q)[I(1 + 1) — Q?]. Because this energy must be positive, the allowed values of
[ are given by ,, = @ + n, where n = 0,1,2,.... The lowest LL (or angular momentum
shell) has Iy = (7, and a many-particle wave function can be written as

Q.,1,m) are eigenfunctions of [* and .,

(7) |my,me,...,myy=CL -..Ct C'?Tn] |0}.

my “1mg

Here |m;| < () and C,:fm creates an electron in state |lp,m;). Clearly there are Gy =
( 2(‘?\}"1 ) ways to choose N distinct values of m from the 2¢) + 1 allowed values, so there are
G v N-clectron states in the Hilbert space of the lowest LL. The numerical problem is to
diagonalize the interaction Hamiltonian Hiy = >, - V(|7 —7]) in this G n-dimensional
space. The problem is facilitated by first determining the eigenfunctions |LM ) of the
total angular momentum. Here, [ = A Eg, M =3, m;, and « is an additional label
that accounts for distinct multiplets with the same total angular momentum. Because
iy s a scalar, the Wigner-Eckart theorem

(8) (L'M'o | Hin| LM &) = 61,1801 a0 { L' & | Hing | Lat)

tells us that matrix elements of Hi, are independent of M and vanish unless [/ = L.
This reduces the size of the matrix to be diagonalized enormously [7]. For example, for
N =10 and Q = 27/2 (v = 1/3 state of ten electrons) Gng = 13,123,110 and there are
246 448 distinct. L multiplets with 0 < L < 90. However, the largest matrix diagonalized
is only 7069 by 7069.

Some exact diagonalization results (E wvs. L) for the ten-electron system arc shown
in fig. 1. The Laughlin L. = 0 incompressible ground state occurs at 2Q = 3(N — 1)
for the v = 1/3 state. States with larger values of @ contain one, two, or three QHs
(2Q = 28,29,30), and states with smaller values of @ contain QEs in the ground states.
At 2QQ = 21 the L = 0 ground state occurs, corresponding to v = 2/5 (see fig. 4(b)
below).

It is probably worth noting that on a plane the allowed values of m, the z-component
of the single-particle angular momentum, are 0,1,..., Ny —1. M = 3. m; is the total z-
component of angular momentum (the sum is over occupied states). It can be divided into
Men + Mg, the center of mass and relative contributions. The connection between the
planar and spherical geometries is M = N+ L., Mg = Nl— L, and Mcy = L+ L,. The
Mg, Mcn) acts just like |L, L.). The absence of
boundary conditions and the complete rotational symmetry make the spherical geometry

interactions [8] depend only on My, so

attractive to theorists. Many experimentalists prefer using the |Mg, Mo ) states of the
nlanar ecometry.
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Fig. 1. - The energy spectra of 10 electrons in the lowest Landau level calculated on a Halc
sphere with 20 between 25 and 29. The open circles and solid lines mark the lowest-end
bands with the fewest composite fermion quasiparticles.

6. — Chern-Simons gauge field

The Chern-Simons gauge field is introduced by attaching to each electron a flux t
carrying a flux agg, where ¢g is the flux quantum [9]. This gives rise to a CS magn
field b(7) = ado S, 6(F — )2, where 7 is the position of the i-th electron. b(7)
no effect on the classical equations of motion because no two electrons occupy the s:
nogition and a eiven electron never senses the d-function magenetic field due to of
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clectrons. However, in quantum-mechanical systems, the vector potential @(7) given by

(9) a(r) = ago /d ot )‘I’T(Tl)‘l’(’f'l)

does introduce a phase factor into the wave function [9]. Here W(r;)W(r;) is just the
density operator p(ri) for the electron fluid. The Hamiltonian including the CS gaug
field d(r’) is

(=

(10) H =2~ /d%xpf(r){ﬁﬁ,.Jr gff(q?w aFy| wir).

(&

This Hamiltonian contains terms proportional to d@(7') to the n-th power with n = 0, 1, o
2. The n = 1 term gives rise to a standard two-body interaction. The n = 2 term gives
three-body interactions containing the operator Wi(7)W(# )W (7 )0 (7)) T (7)) 0 ()
The three-body terms are complicated, and they are frequently neglected.

The CS Hamiltonian, usually introduced via a gange transformation, is considerably
more complicated than the original Hamiltonian with @(7) = 0. Simplification result
only when the MF approximation is made. This is accomplished by replacing the operato
p(7) in the CS vector potential (eq. (9)), by its MT' value ng, the uniform equilibriun
electron density. The resulting MF Hamiltonian is a sum of single-particle Hamiltonians
in which an effective magnetic field B* = B + aggns appears.

7. — Jain’s composite fermion picture

Jain introduced the idea of a composite fermion (CF) to represent an electron with
an attached flux tube which carried an even number a(= 2p) of flux quanta [10]. In the
MF approximation the CF filling factor v* is given by v*~! = v~ — &, i.e. the number
of flux quanta per electron of the dc field less the CF flux per electron. When v* is equal
to an integer n = +1,+2, ..., then v = n(1 + an)~! generates (for & = 2) quantum Hall
states at v = 1/3,2/5,3/7,... and v = 1,2/3,3/5,.... These are the most pronounced
FQH states observed.

In the spherical geometry one can introduce an effective monopole strength seen by
one CF [11]. It is given by 2Q* = 2Q —a(N —1) since the o flux quanta attached to every
other CF must be subtracted from the original monopole strength 2Q). Then |Q*| =
plays the role of the angular momentum of the lowest CF shell just as ) = [y was the
angular momentum of the lowest electron shell. When 20Q is equal to an odd integer
(1 4+ o) times (N — 1), the CF shell [§ is completely filled, and an L = 0 incompressible
Laughlin state at filling factor v = (14 a)~! results. When 2|Q*| + 1 is smaller (larger)
than N, QEs (QHs) appear in the shell lgr = [ +1 (Igu = ). The low-energy sector of
the energy spectrum consists of the states with the minimum number of QP excitations
required bv the value of 20* and N. The first excited band of states will contain one
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TABLE L. — The effective CF monopole strength 2Q*, the number of CF quasiparticles (quasiholes
nou and quasielectrons ngg), the quasiparticle angular momenta loe and lgu, and the angular
maomenta L of the lowest-lying band of multiplets for a ten-electron system at 2Q) between 29
and 21.

20 29 28 27 26 25 24 23 2
26" 11 10 9 8 7 6 5 4 3
nqu 2 1 0 0 0 0 0 Wie DG
nas 0 0 0 1 2 3 4 5 6
lon 5.5 5 45 4 3.5 3 2.5 5 Il
loE 6.5 6 55 5 45 4 3.5 3 25

L 10,8,6,4,2,0 5 0 8,6,4,2,0 9,7,6,5,4,3%,1 8,6,5,4%2%0 5,3,1 0

)]

additional QE-QH pairs. The total angular momentum of these states in the lowest-
energy sector can be predicted by addition of the angular momenta (lqu or lgg) of the
nou or nge quasiparticles treated as identical fermions. In table I we demonstrated
how these allowed L values are found for a ten-electron system with 2¢) in the range
20 > 2Q > 21. By comparing with numerical results presented in fig. 1, we readily
observe that the total angular momentum multiplets appearing in the lowest-energy
sector are always correctly predicted by this simple MF CS picture.

It is quite surprising that this MF CS picture works so well. Fluctuations beyond
the MF interact via both Coulomb and CS gauge interactions. The MF CS picture
introduces a new energy scale fww? proportional to the effective magnetic field B*, in
addition to the Coulomb scale. For large values of the applied magnetic field, this new
energy scale is very large compared with the Coulomb scale, but it is totally irrelevant
to the determination of the low-energy spectrum. Halperin, Lee, and Read [12] treated
the interactions beyond the mean-field theory for the CF liquid at B* = 0 that results
from the electron filling factor ¥ = 1/2. Lopez and Fradkin [13] used the same approach
somewhat earlier to treat condensed states at integral CF filling v*. The many-body
calculations are usually carried out in the random phase approximation, despite the lack
of a small parameter to justify this approximation.

Jain took a somewhat different approach. He proposed trial wave functions anal-
ogous to the Laughlin functions, that are constructed from W, the Slater determi-
nants describing the state with n filled LLs, by multiplication by a Jastrow factor
Zowe="]] j k% = 2)%™. This trial function is projected onto the lowest LL at the
original magnetic field B. Jain used the trial functions to estimate the energies of the
fractional quantum Hall states at v = n(1 £ 2mn) !, where n is a positive integer. Be-
cause the trial functions reside within the Hilbert subspace of the lowest LL, Jain avoided
the superfluous MF energy scale.
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Fig. 2. - Pseudopotential V(L") of the Coulomb interaction in the lowest (a) and the first-excited
Landan level (b) as a function of squared pair angular momentum L'(L' + 1). Squares (I = 5),
triangles (I = 15/2), diamonds (I = 10), and circles (I = 25/2) indicate data for different values
of @ =1+n.

8. — Pseudopotentials

Electron pair states in the spherical geometry are characterized by a pair angular
momentum L' = Ljp. The Wigner-Eckart theorem tells us that the interaction energy
Vi(L') depends only on L' and the LL index n. Figure 2 gives a plot of V,,(L') vs.
L'(L"+1) for the n = 0 and n = 1LLs. We define a harmonic pseudopotential Viy(L')
to be one that is of the form Viy = A+ BL/(L/ + 1), where A and B are constants. The
allowed values of L' for a pair of fermions each of angular momentum [ are given by
L' =2l — R, where R is referred to as the relative angular momentum and must be an
odd integer. We define V(L") to be superharmonic (subharmonic) at L' = 21 — R if it
increases approaching this value more quickly (slowly) than the harmonic pseudopotential
appropriate at L' —2. We often write the pseudopotential as V(R), since L' = 21 —R. For
the lowest LL V4 (R) is superharmonic everywhere. This is apparent for the largest values
of L' in fig. 2. For the first-excited LL V| (R) is superharmonic only for R > 1. Although
V) increases between L' = 21 —3 and L' = 2] — 1, it increases either harmonically or more
slowly. For higher LLs (n = 2,3,4,...) V,(L') increases even more slowly or decreases
at the largest values of L’. The reason for this is that the wave functions of the higher
LLs have one or more nodes giving structure to the electron charge density. When the
separation between the particles becomes comparable to the scale of the structure, the
repulsion is weaker than for structureless particles.

9. — Angular momentum

We have already seen that a spin-polarized shell containing N fermions each with
ancenlar momentiim ! can be deseribed by eicenfiinetione of the total sneiilar mamentiim
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Lo T, [; and its z-component M = Y".m;. We define fr(N,I) as the number
multiplets of total angular momentum L that can be formed from N fermions each wit
angular momentum /. We usually label these multiplets as . La) where it is understoo
that each multiplet contains 2L + 1 states having —L < M < L, and « is the label the
distingnishes different multiplets with the same value of L. We define f,,;j =+ fj, th
angular momentum of the pair 4, j each member of which has angular momentum /. Tk

following theorems are quite useful:

Theorem 1.

(11) L2+ N(N fo :
)

The sum on the right-hand side is over all pairs (i, 7).
Theorem 2.

(12) fL(N,0) = fL(N,T7),
where [* =1 — (N —1) and 21 > N — 1.

Theorem 3. If g7,(N, 1) is the boson equivalent of fr(N,1), then
(13) QL(N; lB) T ff;(l?vsll:‘)a

if Ip = lp — (1/2)(N —1).

The first theorem can be proven very simply using the definitions of L? and 5 (4.4) 75
and eliminating ; - l} from the pair of equations. The other two theorems are almo:
obvious conjectures to a physicist, but there exist rigorous mathematical proofs [14]
their validity.

10. — Coefficients of fractional parentage

Suppose three fermions each have angular momentum /. One can determine the tot
angular momentum L by adding Iy and ls to obtain L5 and then adding I3 to obtain .
We can express this as

(14) 1% La) =Y Gpa(La2)|l?, Liz; ; L).

LIZ

|12, Ly2;1; L) is a wave function in which /; and I3 have been combined to obtain Lis.

is antisymmetric under interchange of the fermions 1 and 2. Next one adds the this
fermion with angular momentum I3 = [ to obtain L. The function |12, Lio;1; L) is nq
anticrmmetric inder interchanee of 2 with either 1 or 2. However. if the coefficies



'OMPOSITE FERMIONS IN QUANTUM HALL SYSTEMS 47

'La(L12) is chosen correctly |I%; Loy is totally antisymmetric. G, (Lq2) is called th
oefficient of fractional parentage [15], and it is related to the Racah coefficients.
A gencralization of the three-fermion problem can be made by writing

15) NiLay =" " Groprer (Laz)|i%, L1z V72, L'o/; L).

L'a! L12

N=2 L'a’y is the o multiplet of total angular momentum L' of N —2 fermions each wit!
ngular momentum /. From [V 2 I/&') and |2, L12) one can construct an eigenfunctio
[ total angular momentum L. The coefficient G'po r/o/(Li2) is called the coefficien
[ fractional grandparentage [15]. Tt produces a totally antisymmetric eigenfunctio
N: La). Equation (15) together with the theorem on pair angular momentum, eq. (11)
llows us to obtain the following useful result:

16) LL+ 1)+ NN =21 +1) = (", La| Y LE|IY; La).

ecause eq. (15) expresses the totally antisymmetric eigenfunction |IV; La) as a linea
mbination of states of well-defined pair angular momentum L;;, the right-hand side o
1. (16) can be expressed as

7) %N(N =1) > Gra(L12)Lia(L1a +1).

1 this expression Gro(L12) is equal to a sum over all L'a’ of |G ra. 1o (L12)]?, and is -
easure of the amplitude of pair states with pair angular momentum Lyq in [IV; La). Tt i
iteresting to note that the expectation value of the square of the pair angular momentun
immed over all pairs is totally independent of the multiplet «. It depends only on th
tal angular momentum L. Because the eigenfunctions [[V; La) are orthonormal,

8) Z Z Gra,ra(L12)Grg o (L12) = 8ug -

Lia L'’

rom eqs. (16)-(18) we have two useful sum rules [16] involving Gy (Li2).
They are

9) ZQLQ(LM) =1,

L2

1d

0) %N(N 1)) " Lia(Lnz + DGra(Lnz) = LL + 1) + N(N — 2)I(1 + 1).
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The energy of the multiplet |[IV; La) is simply

(21) BBy = %N(N =) T G AV ()

L2

where V(Ly2) is the pseudopotential appropriate to the interacting particles. Equa
tion (21) together with our sum rules on Gro(L12) gives the remarkable result that for
a harmonic pseudopotential Vi(L12) (as defined in sect. 8) the energy E, (L) is totally
independent of . This means that all of the eigenfunctions of the same total angulai
momentum L have the same energy. The harmonic pseudopotential introduces no corre
lations; any linear combination of the eigenstates of the total angular momentum having
the same eigenvalue L is an eigenstate of the harmonic pseudopotential.

11. — Non-harmonic pseudopotentials and correlations

Because the harmonic pseudopotential introduces no correlations, every multiplet witl
the same total angular momentum L has the same energy. Thus if Viy = A4+BL1y(L1a+1

(22) En(L)=N %(1\T—1)A+B(Nf2)l(l+1) + BL(L+1),

totally independent of «v and increasing with L as L(L + 1). Only the anharmonic par
of the pseudopotential AV(R) = V(R) — Vu(R) lifts the degeneracy of the multiplet:
of a given L. If AV is zero except at R = 1, then AV(R = 1) is the only energy scal
responsible for the correlations. For positive values of AV(R = 1), it is obvious that th
lowest-energy states will tend to avoid pair states with R = 1 to the maximum possibl
extent. This is exactly what we mean by Laughlin correlations. If AV(R = 1) is ver
large, then for the L = 0 ground state G(R = 1), the amplitude for pairs with R =1, i
very small when 2Q > 3(N — 1). Avoiding R = 1 is equivalent to avoiding pair state
with m = 1 in the planar geometry.

Pair states with R < 2p can be avoided by making use of Theorem 2 (eq. (12)
to select subsets of f(N,l) by introducing an effective fermion angular momentun
Iy =1-p(N - 1), where p is an integer. For states with 2/ = n(N —1), where n = 2p+1
l; selects a single state with L = 0 because 2[5 +1 = N. Then the Laughlin groun
state avoids all the pair states with R < 2p to the maximum possible extent. If V(R
has the property that V(1) > V(3) > --- > V(2p+ 1), then the energy spectrum split
into bands as shown in fig. 3. In this figure a simple example is given for a system o
four electrons. Start with frame (d) which has 2/ = 23, and proceed to (c) through (a
20y =23 —2(N —1) =17, 2I5 = 11, and 2[5 = 5. For 2I3, there are only three state
(L = 0,2,4) all of which contain two QHs each with angular momentum Ilqg = 5/2
These states avoid pair states with R < 1. For 2l = 11, there are two bands. Th
Taweat hand avaide R < 1 while the npper band avoids R < 3. The can between then
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Fig. 3. — The energy spectra of 4 electrons in the lowest Landau level at different monopole
strengths of (a) 2Q2 = 5, (b) 2 = 11, (¢) 2Q = 17, and (d) 2@ = 23. All those 2Q values are
equivalent in the mean-field CF picture (CS transformation with p = 0, 1, 2, and 3, respectively).
(Solid diamonds: states with R > 7, that is G(1) = G(3) = G(5) = 0 and G(7) > 0; open cirecles:
states with R > 5, that is G(1) = G(3) = 0 and G(5) > 0; solid circles: states with R > 3, that
is G(1) = 0 and G(3) > 0; open squares: states with R > 1, that is G(1) > 0.)

(at any given value of L) is set by V(R = 1). For 2[5 = 17, there are three bands that
avold pair with R < 1, R < 3, and R < 5. The starting value of 2] = 23 contains four
bands. The gaps between bands (at a given L) depend on V(R = 1) for the two highest
bands, V(R = 3) for the second to third highest, etc. The average overall dependence
of each band on L(L + 1) is apparent. The Hilbert space of the lowest LL splits into
subspaces which avoid pair states with R <1, R <3, R <5, R <7, ete. This is typical
of T.aniochlin correlationme
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12. — Correlations in higher Landau levels

For the n = 1 LL AV(R = 1) is less than or equal to zero. It is not difficult to see
that a state with Laughlin correlations (avoiding R = 1 pairs) will have a higher energy
than one in which some weight AG(R = 3) is transferred from the value of G(R = 3)
for the Laughlin correlated state to G(R = 1), and to states with R > 5. This is caused
by the sum rules, egs. (19) and (20) and the dependence of E.(L) on AV(R). We
have proposed [17] that formation of electron pairs [18] with R = 1 rather than Laughlin
correlations among the electrons should ocenr when AV(R) < 0 at R = 1. The pairs can
be thought of as bosons or as fermions, because in two dimensions a CS transformation
interchanges boson and fermion statistics. It is of more critical importance to realize
that if more than a single pair is present, the pair-pair separation must be sufficiently
large that no violation of the Pauli principle is involved when accounting for identical
constituent fermions belonging to different pairs. This is accomplished by requiring the
largest allowed value of the total angular momentum of two pairs (treated as fermions)
to be given by L/ = 2lpp, where

(23) 2!1‘.‘]" - 2(2!1 — 1) S FYF(NP = l)

Here [, is the angular momentum of the n = 1 LL (or shell). The parameter yr will be
an odd integer (where the pairs treated as bosons r would be replaced by vg = ¢ — 1 ).
and Np = (1/2)N is the number of pairs. The value of vp is selected so that the fermion
pair (FP) filling factor vyp = Np(2lrp + 1)~ ! is equal to unity when the electron filling
factor v; = N (20, + 1)~ ! is also equal to unity. Equation (23) can be thought of as a CS
transformation in which vp = 3 flux quanta are attached to each boson pair of angular
momentum 2I; — 1. We can think of lgp = 21; — 1 — (3/2)(Np — 1) as the effective (or
mean field) angular momentum of one fermion pair. The relation between vpp and v is

(24) vep =4v7t -3

for large systems (where terms of the order of N~! can be neglected).

We expect pair formation when the electron filling factor vy of the first excited LL
satisfies 2/3 > 1 > 1/3, corresponding to the region in which Laughlin-Jain states [3,10]
that avoid R = 1 would normally oceur for a superharmonic potential. If we assume
that all the electrons form pairs, and that Laughlin correlations occur between different
pairs, then incompressible ground states of the FPs would be expected at vpp = 1 /3
1/5, 1/7, and 1/9. From eq. (24), these correspond to electron filling factor v = 2/3,
1/2, 2/5, and 1/3, respectively. Only at these values of vpp given do we obtain values of
v1 in the required range. It is worth noting that vy = 2/3 can be considered one third
filled with holes because of electron-hole symmetry. The FP filling factor for pairs of
fermion holes would be vrp = 1/9 just as it was for the electrons at vy = 1 /3. Thus,
we can consider the FP filling factors to be small 1/9 < vpp < 1/5. At such filling
factors, the pair-pair pseudopotential should be Coulomb-like (and superharmonic) since
the pair-pair separations are laree compared to the size of a pair.
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Fig. 4. — The N-electron energy spectra calculated on a Haldane sphere with different values of
21 for Coulomb interaction in the n = 1 Landau level ((a)-(c)) and for model pseudopotential

U ((d)-(F))-

These ideas can be tested numerically [17] by using a model pseudopotential U, (R)
given by Up(R > 5) = 0, Uz(R = 1) = 1, and U,(R = 3) = 2Vu(R = 3), where V}4(3)
is the harmonic value such that U; is linear in L(L + 1) between R = 1 and R = 5.
Uy is superharmonic at R = 1 just as the pseudopotential for the lowest LL. U is close
to the behavior of the first excited LL, and for x > 2, U, is strongly subharmonic.
Remember that we can regard U, as the anharmonic part of the pseudopotential, to be
added to an overall Viz(R). Vi shifts the energies by C'+ BL(L+1) (where C and B are
constants as given in eq. (22)) but does not introduce any correlations among multiplets
with the same L.

In fig. 4 we present energy spectra for N = 8 at 2{; = 17, and N = 10 at 2/; = 21 and
21 = 23. Frames (a), (b), and (c) are for the Coulomb interaction in the n = 1 LL and
(d), (e), and (f) are for the model potential U;. The L = 0 ground states correspond to
filling factors 14 in the first excited LL of 1/3 or 1/2 ((a) and (d)), 1/2 ((b) and (e)), and
1/3 ((c) and (f)). Of course, you must add 2 for the spin up and spin down n = 0LLs,
which are occupied. This gives v = 5/2 or 7/3, 5/2, and 7/3 for the three cases. The
actual V; pseudopotential and the model U; pseudopotential have L = 0 ground states,
but the excitations are clearly different. A term proportional to L(L+1) should be added
to the enercies in (dY (&Y and (f) to account for the harmaonie cantribiition o 77,
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Fig. 5. — Pair amplitude profiles for the lowest-energy N-electron states at L = 0, calculated on

a Haldane sphere with different values of 2I: Coulomb interactions in the n = 0 Landau level
((a)-(c)) and in the n = 1 Landan level ((d)-(f)).

In fig. 5 we display G(R), amplitude for pair states of relative angular momentum R
for the L = 0 ground states shown in fig. 4. For the sake of comparison, G(R) vs. R is
shown for the lowest-energy states of the Coulomb pseudopotential in the lowest LL for
21y = 17, 21, and 23. Notice that G(R = 1) increases in going from the lowest to the
first excited LL, while G{R = 3) undergoes a substantial decrease. This is evidence o]
the formation of pairs and the avoidance of the pair state with R = 3.

It should be noted that the fermion pair state at vpp = 1/5 oceurs at 2lpp = 5(Np —1)
while that at vpp = 1/9 occurs at 2lpp = 9(Np — 1). Using eq. (23) for 2/pp and setting
v = 3 gives the relation [17] between 2I; and N for each of the appropriate filling factors
v1. For the vy = 1/2 state we find 21, = 2N — 3. In this case there is a complementary
state obtained by replacing N by 2/; + 1 — N, i.e. making use of electron-hole symmetry.
It gives for 1, = 1/2 the complementary value of 2I; = 2N + 1. For the vy =1 /3 state
we obtain 20; = 3N — 5. Bven though we find an L = 0 ground state and an cnergy
gap for excitations at this value, an L = 0 ground state with a somewhat larger gap i
found at 21, = 3N — 7. In figs. 4 and 5 this value was used and described a v; = 1/3
state. Of course in large systems these finite-size corrections are negligible. A model

which ernnaidere the N olectron evetem near 4 — 1 /2 divided into N+ unpaired electrons
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and Ny = (1/2)(N — Np) pairs has been studied for some small systems (N < 12) with
some, but not complete success.

13. — Chern-Simons gauge field revisited

In sects. 6 and 7 we introduced the CS gauge field resulting from attaching o flux
quanta to each electron. The CS gauge field (or vector potential @(r)) was given by eq. (9),
and led to a quite complicated Hamiltonian given by eq. (10). Simplification arose only
when the mean-field approximation was made giving rise to an effective magnetic field
B* = B + agong. The MF CS approximation correctly predicted the structure of the
low-energy spectrum for any value of the applied magnetic field B in a very simple way
that involved only the addition of angular momentum of the minimum number of QEs
or QHs required by the monopole strength 2¢) and the number of electrons N. However,
the energy scale of the spectrum involved an effective cyclotron frequency w} = eB* /me
which, at large values of B, was large compared to the Coulomb interaction, but totally
irrelevant to the determination of the energy spectrum. Lopez and Fradkin [13] and
Halperin, Lee, and Reed [12] treated interaction (both Coulomb and CS gauge interac-
tion) among the fluctuations beyond the mean field by standard many-body perturbation
theory with results that were qualitatively correct. This is somewhat surprising because
there is no small parameter to justify simple many-body approximations like the RPA,
or even to assure convergence of the perturbation expansion.

We stated earlier that the CS field b(F) = V x @) had no effect on the classical
equations of motion because the charge on one electron never experience the §-function
CS magnetic field carried around by the other electrons. Ewver since the classic paper
by Aharanov and Bohm [19], it has become customary to think of quantum-mechanical
problems involving a vector potential @(7) within a region in which b(7) vanishes, in
terms of a gauge transformation which alters the phase of the wave function but not
its magnitude. A simple example is given in the introductory quantum mechanics text
by Griffiths [20]. Consider a particle of charge —e and mass m, confined to move on a
circular path in the z-y plane. At the center of the path is a long thin solenoid oriented
in the z-direction. When the solenoid carries a current which produces a flux ¢ = agy,
the eigenfunctions ¢,,(7) can be written as

(25) qbﬂl (F) = e*(-’f‘/h() !‘ d(i’)drlyn-; (F):

where W,,,(7") = ¢"Pu,,(r) is the eigenfunction given by eq. (1) when n = 0. Because
a(r') = (®/2nr)¢ and dF = (7 dr + ¢r d¢), the phase factor in eq. (25) can easily be seen

to equal —iag, where ¢ is the angular position of the particle along its path. This means
(26) O (F) = My ().

For the case where 7" describes 7'} —7%, the relative coordinate of a pair of fermions, eq. (26)
lustrates the famons transmiitation of etatistice in 21D cveteme 0] Fvehanoe of narticlec
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1 and 2 corresponds to replacing the angle ¢ with ¢ + . Therefore, when « is an even
integer there is no change in statistics; when o is an odd integer fermions become bosons
and vice versa, while when « is not an integer the particles obey anyon statistics. The
reason for this is clear. The extra CS flux enclosed by the unperturbed orbit u,, alters
the phase appearing in the angular part of the wave function. As mentioned in sect. 6,
the full Hamiltonian including the CS gauge field is, as a first approximation, usually
treated in terms of the mean field. The qualitative success of this approximation in
predicting the structure of the low-energy spectrum led Jain [10] to suggest a substantial
cancellation between the Coulomb and CS gauge interactions beyond the mean-field
approximation. This cannot be true at arbitrary values of the magnetic field B, because
the two interactions involve different energy scales with different dependence on B.

For a Laughlin v = 1/n state, where n is an odd integer, the MF CF picture replaces
B by B* = B/n. This changes the magnetic length to A* = n'/2), and requires the wave
function given by eq. (5) to contain A* in place of A. The semiclassical orbit will then
have a radius 7%, = n'/2r,, = (2n|m|)}/2A. For an electron pair in the state with |m| = 1,
the addition of two flux quanta per electron (opposite to B) gives B* = /3, and the CF
orbit with [m| = 1 would correspond to the electron orbit with |m| = n. Note however
that in eq. (2), w, is replaced by w? which is smaller by a factor of v = 1/n. The lower
degeneracy of the CF LLs makes it necessary to consider excited CF states involving
the energy scale w which is proportional to the magnetic field. If we look at the limit
where €2/\ < hw,, a correct many-body perturbation theory would have to produce an
almost degenerate band of multiplets corresponding to the states of the lowest electron
LL, separated by a huge gap from higher bands corresponding to higher levels. It is very
difficult to see how a many-body theory without a small parameter for a perturbation
expansion can do this.

A gange transformation is not the only way in which a vector potential @(r"), whose
curl vanishes, can be introduced into a system. We can start with the system in some
initial state, and slowly increase the value of agg, the CS flux, from zero to the final value
where « is some even integer [21]. Consider first a pair of electrons with coordinates 7
and 75. In the single-particle Hamiltonian

2
(27) H, = (2@)1{@ + 2[/_1‘(1) + a( _'1)1} ;

A is simply replaced by A + d@. Here d(#) = (aupo/2m7)d, where r = |7 — 75| and ¢
is a unit vector in the direction of increasing relative coordinate ¢. Note that d(7) =
— (o / 27r)é. Separating the two-particle Hamiltonian into center-of-mass (CM) and
relative (R) coordinate contributions gives for Hg

L 98, OB,

p?
28 g e i
28) B T 2uc 8puc? "

where B — B 4 (9q¢n /mr2Y This is exactlv the same equation as that obtained in the
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absence of CS flux, except that the constant B has been replaced by the operator B. We
can assume that the eigenfunction will still be of the form ¢, (r) = e™®w,, (r), where
Wy, (r) is a new radial function which must account for the r-dependent terms added to
eq. (28) when a # 0. From the term in eq. (28) proportional to B we obtain a new term
(hgm/2pc)(2ao /mr?); this can be combined with the —(h?/2u)(mm2/r?) term. From
the term proportional to B?r? in eq. (28) we obtain two new terms (¢%/2uc?)(agpg/7r)?
and (g/2pc?)agoB. The first of these can also be combined with the — (k2 /2u)(m2/r?)
term, and the second can be combined with the energy E. The result of replacing B
with B = B + (2®/7r2) in eq. (28) is exactly the same result one obtains by replacing
m with m = m 4 «. This means that for o # 0, the orbit is changed by the CS flux
since (1) — Umra(r). In contrast to this result, the gauge transformation method of
introducing the CS flux would simply give the phase factor in eq. (25) multiplying the
radial function w,,(r) for the original electron orbit. It is important to note that the
orbital (.e. the radial function) is unchanged in the gauge transformation approach, but
that it changes when the CS flux is added adiabatically. The angular part of the wave
function is changed by the Bohm-Aharanov phase factor in the gauge transformation,
but unchanged by the adiabatic addition of CS flux [21]. This implies that there is no
change in statistics when the CS flur is added adiabatically. Why is this? It appears
that the time rate of change of the flux through the orbit, which gives rise to an electric
field along the orbit via Faraday's law, causes the relative coordinate 7 to increase or
decrease in magnitude such that the flux through the orbit remains constant. Thus if
we start with the electron pair in the state m = —1 at v = 1/3, and slowly increase
the magnitude of the CS flux from zero to ® = —2¢y, the final state has a radial wave
function ), o((r) = us(r). This orbit encloses three flux units of the de magnetic field
B, and minus two CS flux units or the same total flux as the original m = —1 electron
orbit.

It is important to note that in the adiabatic approximation, the CS pair state has
the same energy (in the absence of Coulomb repulsion) as the original electron pair,
since all the states of the lowest LL (m = 0,—1,—2,...) are degenerate. Only when
Coulomb interactions are included, do the states with a larger average value of r have
lower energy. This is to be contrasted with the mean-field CF picture which introduces
the new energy proportional to hw?, and excitations with energy proportional to w}
instead of proportional to /), the Coulomb scale.

14. — Gedanken experiment: Laughlin states and the Jain sequence

A useful way of arriving at trial functions with built-in Laughlin correlations makes
use of the adiabatic addition of flux [21]. Consider starting with the v = 1 state at a mag-
netic field B,—;. The antisymmetric product state ¥(1,2,...,N) = A HJN=1 w1525
where 1, (2) = € %ug,, (r) and A is the antisymmetrizing operator, gives us the result
appearing in eq. (5) with A = Ay = (he/eB;)'/?. Now adiabatically increase B from B,_;
to B,,—1/3 = 3B; while at the same time adiabatically adding to each electron two CS flux
quanta oriented opposite to the de maenetic field. The v = 1 wave funetion nnderocons
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two changes: i) A; must be replaced by Ay/3 = V3, and ii) a Laughlin-Jastrow factor
11 (i) z?j must he introdiced to account for the effect on each pair (i, j) of adiabatically
adding the CS flux. Of course, this is just the Laughlin wave function. The very same
idea can be applied to states of the Jain sequence. For example, consider the v = 2/5
state. Start with a spin-polarized N electron system filling two LLs. The wave func-
tion describing this state is an antisymmetric product of single-particle wave functions
U, (7) = €™y (1) for By, in the lowest and first excited LLs. The radial functions
Upm are given by ty,, (r) = [nI/27rA%2m('n,—|—|m|)5}1/2(7'/)\2)‘“”,[1;”"(7“2/2/\5) exp[—r? /4)E],
where As is the magnetic length at the magnetic field B = B,—», and L™ is an asso-
ciated Laguerre polynomial. Now adiabatically increase B from By to By;; = 5B2 and
simultaneously increase the magnitude of the CS flux on each electron from o = 0 to
|ee| = 2. The result is that A2 — Ag/5 = V5As in the single-particle wave functions, and
a Laughlin-Jastrow factor [] (.5 zf} is introduced. This is essentially the trial function
proposed by Jain, and it is not difficult to see that it resides almost entirely in the Hilbert
space of the lowest LL at B = Bys.

The interesting aspect of the adiabatic introduction of CS flux is that it automatically
introduces Laughlin correlations without resorting to a mean-field approximation. The
energies in the absence of Coulomb interactions are totally unchanged, since the trial
functions reside in the lowest LL at the higher de magnetic field (B3, Bajs,...). We
know that Laughlin correlations, by avoiding pair states with the smallest values of R,
select from fr,(N,1) a subset fr(N,l* =1 — N + 1) with smaller repulsion and lower
energy only when Coulomb interactions are included.

15. — The composite fermion hierarchy

Haldane [22] introduced the idea of a hierarchy of condensed states in which the
Laughlin QPs (of the condensed electron states) could form daughier states, which in
turn could have new (OPs and on infinitum. He treated the QPs as bosons and simply
assumed that they would have Laughlin correlations without knowing much about their
residual interactions. The Haldane hierarchy contained, in principle, all fractional filling
factors with odd denominators. Jain’s CF picture [10,23] gave a simple intuitive picture
of certain odd denominator fractions belonging to the sequence v = n(1+2pn)~!, where
p was a positive integer and n = £1, £2,. ... As discussed earlier, the Jain states can be
viewed as integral quantum Hall states of the composite fermions. Not all of the fractions
belonging to the Haldane hierarchy appear in the Jain sequence, and the relation of the
two hierarchies of incompressible states is not clear. The simplest examples are the
v = 4/11 and v = 4/13 states which belong to the Ialdane hierarchy but cannot be
written in the form n(1 + 2pn) ' for spin-polarized states, where p is a positive integer
and m=1=1, 26 ., 5

Sitko et al. [24] introduced the CF hierarchy scheme in order to understand if partially
filled CF shells could give rise to daughter states that would account for the missing odd
denominator fractions. It was suggested that filled CF shells could be ignored, and that
the Chern-Simons transformation could simply be applied to the CF QPs in a partially
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filled CF shell. This leads to a hierarchy scheme described by the sequence
(29) U;l =20t (71,5+1 + l/g+l)_1 :

Here vy is the QP [illing factor at the I-th level of the hierarchy, 2p; (where p; is an
integer) is the number of flux quanta per QP added in the CS transformation to generate
the new QPs of the (I + 1)-st level, and n;y, is the number of completely filled levels of
the new CF QPs. Of course,

(30) L1 =1opn — P:-L(qu,n = 1)

represents the effective angular momentum of the lowest shell at level (n + 1) in terms
of angular momentum lop., and QP number Ngp ,, at the n-th level of the hierarchy. If
741 turns out to vanish (i.e. a filled QP shell occurs at level (I + 1) of the hierarchy),
then 14 is simply the reciprocal of the integer 2p; + n E;l] . This approach generates all of
the Haldane fractions, and it shows the connection between states of the Jain sequence
and Haldane’s continued fractions.

It must be emphasized, however, that the electron system has been assumed to be spin
polarized. and that the CF QP excitations (¢.e¢. CFs in partially filled angular momentum
shells) have been assumed to support Laughlin correlations. The CF hicrarchy picture
scems a much more reasonable assumption and certainly predates the idea of directly
adding two flux quanta to some electrons and four flux quanta to others to obtain the
so-called CF? and CF* composite fermions [25, 26].

As an illustration let us look at N = 8 electrons at 2ly = 18. The CF transformation
ogives the effective CF angular momentum at the first hierarchy level as

(31) 207 = 2lp — 2po(N — 1).

Taking pp = 1 gives 2I7 = 4. This CF shell can accommodate 2{7 + 1 = 5 composite
fermions leaving Ngp1 = 3 quasielectrons in the next shell with angular momentum
e = Ui + 1 = 3. Reapplying the CS transformation to these three QEs gives

(32) 7 25 =2(I7 +1) — 2p1 (Nge,1 — 1).

Taking p1 = 1 gives 25 = 6 — 2(3 — 1) = 2. This shell can exactly have 215 + 1 = 3 of
the QEs giving ny = 1 and vy = 0:

(33) V]__I o= 21)1 + (’.".’,2 + TJQ)NI = 3

I'hen, the hierarchy equations give

y 11
(34) v =2p0+(n ) = Vi
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Fig. 6. — Low-energy states of the spectrum of eight electrons at 20 = 18. The lowest-
band contains three QEs each with lqr = 3. Reapplying the CS mean-field approxima
these QEs would predict an L = 0 daughter state corresponding to » = 4/11. The data
it clear that this is not valid.

predicting a Laughlin-correlated spin-polarized state at v = 4/11 arising from tl
state at vor = 1/3.

When numerical caleulations were carried out for N = 8 and 2[y = 18, the low-
spectrum contained the five multiplets L = 0, 2, 3, 4, and 6 resulting from the
QEs each with lgr = 3. However, L = 0 and L = 3 states clearly had the I
energies, and the degenerate multiplet at L = 2 had a very slightly lower energy th
multiplets at L = 4 and 6. This is illustrated in fig. 6, a plot of the low-energy spe
of an eight-electron system in the lowest LL at angular momentum lp = 9. It was ¢
realized that not all the states predicted by the CF hierarchy approach (or by the I
hierarchy scheme) were realized, but the reason why was not completely clear.

16. — Quasiparticle-quasiparticle interactions

Although the mean-field CS approximation correctly predicted the structure
lowest band of states in the energy spectrum for any value of the de magnetic fi
was clear that residual QP-QP interactions were present. In fig. 1, frames (d) a
show states containing two QEs and two QIIs, respectively. In frame (d) each C
T — O/9 an the allowed valiee of a OF pair anetilar momentum are 0. 2. 4.
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Fig. 7. — The pseudopotentials of a pair of quasielectrons (left) and quasiholes (right) in Langhlin
v =1/3 (top) and v = 1/5 (bottom) states, as a function of relative pair angular momentum R.
Different symbols mark data obtained in the diagonalization of between six and eleven electrons.

8. For the QHs lgy = 11/2 and the allowed pair angular momenta are 0, 2, 4. 6, 8,
and 10. If there were no residual QP-QP interactions all the 2QF states would have the
same energy, namely 2eqp, twice the energy of a single QE. The same would be true for
the QH pair: all angular momentum states would have energy 2eqp in the absence of
residual interactions. Because the pair angular momentum L/ is equal to 2/ — R, we can
immediately obtain Vog-qr(R) and Vou.qu(R) from the numerical data up to an overall
constant (which is of no importance in determining the QP-QP correlations). In fig. 7
we display Vop.gp(R) as a function of R obtained from exact numerical diagonalization
of systems containing up to eleven electrons. We have considered QPs of the Laughlin
v = 1/3 and v = 1/5 states. Notice that the behavior of QEs is similar for v = 1/3
and v = 1/5 states, and the same is true for QHs of the 1/3 and 1/5 Laughlin states.
Because VQE—QE ('R = 1) < VQ’E_Q‘E(R = 3), and VQE_QE(R = 5) < VQE_QE(R = 7), we
can readily ascertain that Vg qr(R) is subharmonic at R = 1 and R = 5. Similarly,
Vaur-qu(R) is subharmonic at R = 3 and probably at R = 7.
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Fig. 8. — Quasielectron pseudopotential Voe qr(R) as a function of N, the inverse of the
particle number for the values of relative angular momenta R = 1, 3, and 5. Extrapolation to
N~' — 0 corresponds to an infinite planar system.

There are clearly finite-size effects since Vgp.qp(R) is different for different values
of the electron number N. However, when plotted as a function of N™*, Vop.qr(R)
converges rather well to a rather well-defined limit, as shown in fig. 8 for Vor.qr(R)
at R = 1, 3, and 5. The results are quite accurate up to an overall constant (which is
of no significance when you are interested only in the behavior of Vop.qp as a function
of R). Because the short-range interactions (i.e. at small values of R or small QP-QP
separations) determine the nature of the ground state, numerical results for small systems
describe the important correlations very well for systems of any size.

From our discussion of correlations in the first excited LL, it is apparent that Laughlin
correlations among QEs will not occur at R = 1 and at R = 5, nor will they occur among
QHs at R = 3. This immediately tells us that it is impossible for vqr = 1/3 (and 1/7)
and vgu = 1/5 to lead to incompressible daughter states of the CF hierarchy. We
emphasize that this statement means that for a spin-polarized state in which QPs of the
Laughlin v = 1/3 state (or v = 1/5 state) yield filling factor vqe = 1/3 (or vqu = 1 450y
Laughlin correlations among the QPs giving rise to daughter stales, at e.g. v = 4/11 {or
v =4/13), cannot occur! How then can we possibly understand the observations [25] of
B s bl e sl Tl o S ST b e e o £ T REREE
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17. — Quasiparticle-quasiparticle pairing and novel families of incompressible
states

If Laughlin correlations among the QPs are ruled out at certain values of the QP
filling, the observation of incompressible states at such values of vgp must be associated
with one of two possibilities. We assumed at the start that the electron system was spin
polarized. It could be that the CF excitations in the partially filled CF shells have their
spins reversed with respect to the majority spin CFs filling the fully occupied LLs. Then,
if the reversed spin CFs had interactions that gave a superharmonic pseudopotential,
Laughlin correlations among the new reversed spin CF QPs could occur in daughter
states. This was suggested by Park and Jain [26], as a possible explanation of the 4/11
incompressible state, but they did not investigate Vrqor.ror(R). the psendopotential
for the interaction of reversed spin QE to prove that it could really occur. Szlufarska
et al. [27] did investigate the interaction of reversed spin QBEs and demonstrated that
Vrqe-rqu(R) was weakly superharmonic at R = 1, making spin unpolarized states a
possible explanation of daughter states that would otherwise be forbidden.

A more interesting possibility is that of pairing [28] of the CF QPs. We know from
our study of correlations in the first excited LL that pairing of the electrons is expected
when V1(R), the pseudopotential describing the interaction of a pair of electrons, is not
superharmonic. This is exactly the behavior we found for Vgp.gp at certain values of R
in sect. 16.

Because Vgp.qr(R) has its maximum at R = 3, the QEs tend to form pairs with
R =1 in order to minimize the pair amplitude at R = 3. The pairs of effectively bound
fermions would usually be treated as bosons, but in 2D systems boson and fermion
statistics can be interchanged via a CS transformation [9,14]. A single pair will have an
angular momentum L' = 2] — 1 (the largest possible angular momentum of two fermions
each with angular momentum [), and a relative angular momentum R = 1. However,
when more than a single pair is present, the allowed values of the total angular momentum
of the pair must be chosen in such a way that the Pauli principle is not violated when
accounting for identical constituent fermions belonging to different pairs. This can be
accomplished in exactly the same way as was done for electrons in the first excited LL.
[f the pairs are treated as fermions, the minimum value of the allowed total angular
momentum of two pairs is taken to be L' = 2lypp, where

(35) 2pp = 2(21 — 1) — yr(Np — 1).

Here Np is assumed to equal N/2 (N = the number of QEs, each with angular mo-
mentum /), and vp is taken to be 3. Equation (35) is exactly what we obtain by a CS
transformation that attaches three flux quanta to each pair. The effective (mean field)
angular momentum of a single FP is lpp = 21 — 1 — (3/2)(Np — 1). The relation between
vpp and vop is exactly the same as we found in sect. 12,

(36) Voo == =3,



494 Jonun J. Quinn, A. Wdus, K.-S. Y1 and JENNIFER J. QU

043 . ® 5 '=.:.:: 03
L ] L ]
. ..:::-C‘: % —--(=¥- electrons
L ] . 5
| Cetge gt 2 —@— 0
L] e ® e o @
—_— L] ...
T
L]
© 1 . . :.'
w L ]
L]
i excitation gap
®
(a)
OH 2 e o FRa Ty L B ]
(IRRRRLE- R B VO  TREW - IR DR |- Ko IO - AR A Al | W BB - A B
I R

Fig. 9. - (a) Energy spectra as a function of total angular momentum L of 10 QEs at 2/ =
corresponding to vor = 1/2 and v = 3/8. It is obtained in exact diagonalization in terms
individual QEs interacting through the pseudopotential shown in fig. 1. (b) Coefficients G(
the amplitude associated with pair states of relative angular momentum R, for the lowest L -
state. The solid dots are for 10 QEs of the v = 1/3 state in a shell of angular moment
[ = 17/2. The open circles are for 10 electrons in the lowest Landau level at Iy = 17/2.

In eq. (36) terms of order N ' have been omitted since they vanish in the limit of la;
systems. The CS transformation given by eq. (35) automatically forbids states of t
FPs with the smallest separation. The smallest allowed value of 2lpp avoids a violat;
of the Pauli principle, and helps the individual QE to avoid the largest QE-QE repuls
at R = 3. The CS transformation selects from gp(N,[), the number of multiplets
total angular momentum L that can be obtained from N fermions each with angu
momentum I, gz, (Np, lpp) which is a subset [29] of gr,(N,1).

We expect pair formation for QE filling factors satistying 2/3 > vqr > 1/3, wh
Laughlin-Jain states that would avoid R = 1 occur for a superharmonic pseudopotent
Fermion pair states with vpp = 1/3, 1/5, 1/7, and 1/9 give through eq. (36) QE filli
of vqr = 2/3, 1/2, 2/5, and 1/3. Only these values of vpp give Laughlin states of the F
with vgp in the required range. In the hierarchy scheme describing partially filled

TaBLE 1. — Nowvel family of incompressible stales resulting from pairing of composite ferm
quasiparticles in the lowest Landau level.

VEp 1/3 1/5 ]/7
VQE 2/3 1/2 245
v 5/13 3/8 [7/19] 4
von 2/7 1/4 2/9

v 5/17 3/10 [7/23] 4




ITE FERMIONS IN QUANTUM HALL SYSTEMS 495
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Coefficients G(R), the amplitude associated with pair states of relative angular mo-
1 R, for the lowest L = 0 state. The open circles are for 10 QEs in a shell of angular
um [ = 27/2. The solid dots are for 10 electrons in the lowest Landau level at [ = 27/2.

the original electron filling factor is given by v~! = 2 4 (1 + vqr)~'. This is just
) with pg = 1, ny = 1, and v, = vgr. For QHs, the pairs have R = 3 and avoid
we expect them to oceur for vop satisfying 1/3 > gy > 1/5. This novel scheme
pairing leads to a novel family of incompressible states, as shown in table I1. All
> states except the 7/19 and 7/23 states have been observed [25]. We do not know
- states are simply difficult to observe (and might be seen in future experiments)
ere is some reason why they are not realized in real systems. We have considered
mplete pairing of all the QPs, and this may be an oversimplification that needs
~considered.

n illustration, we have performed an exact diagonalization on a system containing
0 QEs at 2] = 17. This corresponds to vgr = 1/2 and v = 3/8. The energy
m is given in fig. 9(a). It is obtained using the QE-QE pseudopotential presented
2. The L = 0 ground state is clearly separated by a gap from the lowest excited
In fic. 9(b) we show the hehavior of the amnlitiide CITR)Y for the T, — O orarnd cfateo
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for all the allowed values of R. This data was obtained using the QE-QE pseudopotent;
given in fig. 7. For comparison G(R) is presented for the pseudopotential of electro
in the lowest LL with N = 10 and 2{y = 17. This state corresponds to a Jain v = 3,
state containing two QHs each with lqi = 5/2. The three states in the low-energy sect
have L = 0, 2, and 4, and G(R) is shown for the L = 0 state. It should be emphasiz
that the three low-energy states of the superharmonic potential have G(R = 3) as
maximum and G(R = 1) as a minimum. This is typical of Laughlin correlated stat
for 1/2 > v > 1/3. In contrast, the subharmonic pseudopotential displays, relative
the superharmonic one, a much larger value of G(R = 1) and a much smaller value
G(R = 3). This is in accord with the formation of pairs with R = 1 and the avoidan
of the maximum QE repulsion at R = 3. Figure 10 shows the G(R) values for a mc
dilute QE state with N = 10 and 20 = 27. It is contrasted with the L = 0 state of t
superharmonic potential at N = 10 and 2ly = 27. Note that the G(R = 1) is rougk
equal to 1/9, corresponding to only five R = 1 pairs out of forty-five possible pair state

Rather than contradicting the assertion that the 4/11 and 4/13 states cannot
incompressible states of the spin-polarized CF hierarchy, the results of Pan el al. [2
offer support for the idea of pairing at certain values of vgp where Laughlin correlatio
cannot be supported. The pairing gives a bonus in that it explains the occurrence
even denominator fractions in the lowest LL (at 3/8 and 3/10). As far as we know, no
of the other hierarchy schemes studied so far do this. We emphasize that the simyj
repetition of Laughlin correlations among daughter states containing QQPs is not alwa
appropriate [30,31] because of the form of Vop.qp(R) [6,22,24,25,32-35]. The propos
pairing of CF QPs together with the Laughlin correlations among the pairs gives rise
a novel type of QP and to an entirely new hierarchy of incompressible states.
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