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Composite fermions and the fractional quantumHall e�ect:
essential role of the pseudopotential
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Abstract

The mean �eld (MF) composite fermion (CF) picture successfully predicts the band of low-lying angular momentum
multiplets of fractional quantum Hall systems for any value of the magnetic �eld. This success cannot be attributed to a
cancellation between Coulomb and Chern–Simons interactions between uctuations beyond the mean �eld. It results instead
from the short-range behavior of the Coulomb pseudopotential in the lowest Landau level (LL). The class of pseudopotentials
for which the MFCF picture is successful can be de�ned, and used to explain the success or failure of the picture in di�erent
cases (e.g. excited LLs, charged magneto-excitons, and Laughlin uasiparticles in a CF hierarchy picture). ? 2000 Elsevier
Science B.V. All rights reserved.
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1. Introduction

The MFCF picture [1,2] does remarkably well in
predicting the band of angular momentum (L) multi-
plets that form the low-energy sector of a 2D electron
system in a strong magnetic �eld B. A Laughlin [3]
incompressible L= 0 ground state of an N electron
system occurs when the magnetic monopole (which
produces the radial magnetic �eld at the surface of the
Haldane [4] sphere) has strength 2Sm = m(N − 1),
where m in an odd integer. For 2S di�erent from 2Sm
there will be |2S − 2Sm| quasiparticles (QPs). This is
illustrated in Fig. 1, which displays the energy spec-
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tra of ten electrons on a Haldane sphere at monopole
strength 2562S629. Frame (a) shows the Laughlin
incompressible ground state at L= 0. Frames (b) and
(c) show states containing a single quasielectron QE
(a) and quasihole QH (b) at L= 5. In frames (d) and
(e) the two QP states form the low-energy bands. In
the MFCF picture, the e�ective monopole strength
2S∗ is given by 2S∗ = 2S − 2p(N − 1), where p is
an integer. S∗ is the angular momentum l∗0 of a MF
CF in the lowest CF Landau level. At 2S = 27 (with
p= 1), l∗0 =

9
2 and the lowest shell accommodates

2l∗0 + 1 = 10 CF’s, so that the shell is �lled giving
L= 0. At 2S = 27± 1 there will be one CF QHwith
lQH = 5 or one CF QE with lQE = 5, giving L= 5.
At 2S = 27± 2 there will be two CF QH each with
lQH = 11

2 giving L= 0, 2, 4, 6, 8, 10, or two CF QE
each with lQE = 9=2 giving L= 0, 2, 4, 6, 8.
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Fig. 1. Energy spectra of ten electrons in the lowest LL at
2562S629. Open circles mark lowest energy bands with fewest
CF QPs.

It is quite remarkable that the MFCF picture
works so well since its energy scale is ˜!∗

c =
(2p+ 1)−1˜!c ˙ B, in contrast to the scale of
the Coulomb interaction e2=�˙

√
B, where � is the

magnetic length. The energy values obtained in the
MFCF picture are totally incorrect, but the structure
of the low-energy spectrum (which multiplets form
the lowest lying band) is correct. As �rst suggested
by Haldane [5], this is a result of the behavior of the
pseudopotential V (L′) (interaction energy of a pair
of electrons versus pair angular momentum) in the
lowest LL.

2. Pseudopotential

In Fig. 2 we plot V (L′) versus L′(L′ + 1) for the
lowest (n= 0) and �rst excited (n= 1) LL for di�er-
ent values of 2l [6]. Note that for n= 0 V (L′) rises

Fig. 2. Pseudopotentials V of the Coulomb interaction in the lowest
(a), and �rst excited LL (b) as a function of squared pair angular
momentum L′(L′ + 1) for di�erent values of l = S + n.

more steeply than linearly with increasing L′ at all
values of L′, but for n= 1 this is not true at the highest
allowed values of L′.
A useful operator identity [7] relates the total angu-

lar momentum L̂=
∑

i l̂i to the sum over all pairs of
the pair angular momentum L̂ij = l̂i + l̂j,

∑

i¡j
L̂
2
ij = L̂

2
+ N (N − 2) l̂2: (1)

Here, each fermion has angular momentum l, so that

l̂
2
has the eigenvalue l(l+ 1). From Eq. (1) it is not

di�cult to show that for a “harmonic” pseudopoten-
tial de�ned by VH(L′) = A+ BL′(L′ + 1), the energy
E�(L) of the �th multiplet with total angular momen-
tum Lwould be independent of �, and that E(L) would
be of the form a+ b L(L+ 1) [7]. Because the actual
pseudopotential is di�erent from VH(L′), the degener-
acy of the multiplets � of the same L is lifted.
For a pseudopotential (which we will refer to as a

short range, SR, potential) that rises more quickly with
L′ than VH(L′), the lowest energy multiplets must, to
the extent that it is possible, avoid having pair ampli-
tude (or coe�cient of fractional parentage [8]) from
the largest values of L′. For VH(L′) the lowest angular
momentum states have the lowest energy. However,
the di�erence �V (L′) = V (L′)− VH(L′) lifts the de-
generacy of multiplets having the same value of L. If
some low value of L has a very large number NL of
multiplets, �V (L′) can push the lowest multiplet at
that L value to a lower energy than any multiplet of
a neighboring smaller L value for which NL is much
smaller.
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Fig. 3. Energy spectra of four electrons in the lowest LL. Di�erent
symbols mark subspaces Hp for p = 0, 1, 2, and 3.

3. Energy spectra of SR pseudopotential

Fig. 3 displays some very informative results [7]
for a simple four particle system at di�erent values of
the single particle angular momentum l (which di�ers
by �l= p(N − 1); p= 1; 2; : : :). Note that the set
of multiplets at l− p(N − 1) is always the subset of
the multiplets at l. The SR pseudopotential appears
to have the property that its Hilbert space H splits
into subspaces Hp containing states with no parent-
age from pair angular momentum L′ = 2(l− p)− 1.
H0 is the entire space,H1 is the subspace that avoids
L′MAX = 2l− 1, H2 avoids L= 2l− 1 and 2l− 3,
etc. Since the interaction energy in each subspaceHp

is measured on the scale V (L′ = 2(l− p)− 1), the
spectrum splits into bands with gaps between bands
associated with the di�erences in appropriate pseu-
dopotential coe�cients. The largest gap is always
between the zeroth and �rst band, the next largest be-
tween the �rst and second, etc. Note that the subset of
multiplets at l′ = l− p(N − 1) is exactly the subset
chosen by the MFCF picture. In addition, at the Jain
values �= n(1 + 2pn)−1, where n= 1; 2; : : : ; there is
only a single multiplet at L= 0 in the “lowest subset”
for an appropriate value of p.
These ideas can be made more formal by using the

algebra of angular momentum addition and the “co-
e�cients of fractional parentage” familiar to atomic
and nuclear physicists. The conclusions are quite clear.
There is really only one energy scale, that of the
Coulomb interaction e2=�. Laughlin states occur when

the fractional parentage for electrons (or holes) allows
avoidance of the pseudopotential V (2(l− p)− 1) for
p= 0; 1; : : : . Jain states occur when the fractional
parentage of the appropriate V (2(l− p)− 1) is much
smaller (but not zero) for L= 0 than for other allowed
multiplets. The MFCF picture works only if V (L′)
is a SR potential that rises like [L′(L′ + 1)]� with
�¿ 1 [7].

4. Other pseudopotentials

For the n= 1 and higher LL’s, V (L′) is not SR
for all values of L′. For n= 1, V (L′) is essentially
harmonic at L′ = L′MAX, and for n¿ 1 it is subhar-
monic at the largest values of L′. Therefore, even if
ground states at �lling factors like �= 2 + 1

3 have L=
0, they are not Laughlin-type incompressible states
which avoid pair angular momentum L′MAX = 2l− 1.
A CF hierarchy scheme was proposed by Sitko et

al. [9] in which the CF transformation was reapplied
to QPs in partially �lled shells. The application of
the MFCF approximation was found to work in some
cases but not in others. Some idea of when the MFCF
approximation is valid can be obtained from looking
at the 2QE and 2QH states in Fig. 1. The QH pseu-
dopotential is SR at L= 10, but not at L= 8. The QE
pseudopotential is certainly not SR at L= 8, but at
L= 6 it might be. This suggests that Laughlin states
will be formed by QHs of the �= 1

3 state at �QH =
1
3

and by QEs of the �= 1
3 state at �QE = 1, explain-

ing the strong FQHE of the underlying electron sys-
tem at the Jain �= 2

7 and
2
5 �lling factors. In con-

trast, no FQHE at �QH = 1
5 (�=

4
13 electron �lling) or

�QE = 1
3 (�=

4
11) would be expected because the QP

pseudopotentials are not SR at these values.
A �nal interesting example is that of a multi-

component plasma of electrons and one or more neg-
atively charged excitonic ions X−

k (a bound state
of k neutral excitons and an electron) formed in an
electron–hole system. These excitonic ions are long
lived fermions with LL structure [10,11]. The an-
gular momentum of an X−

k on a Haldane sphere is
lk = S − k. The pseudopotentials describing the in-
teractions of X−

k ions with electrons and with one
another can be shown to be SR. In fact, VAB(L′),
where A or B or both are composite particles has



4 J.J. Quinn, A. W�ojs / Physica E 6 (2000) 1–4

Fig. 4. Low energy spectra of di�erent charge con�gurations of
the 12e + 6h system on a Haldane sphere at 2S = 17.

a “hard core” for which one or more of the largest
values of VAB(L′) are e�ectively in�nite.
The following con�gurations of ions have low en-

ergy in the twelve electron–six hole system at 2S = 17.
The 6X− con�guration (i) has the maximum total
binding energy �i. Other expected low lying bands are:
(ii) e− + 5X− +X0 with �ii and (iii) e− + 4X− +
X−
2 with �iii. Here, �i¿�ii¿�iii are all known. Al-
though we are unable to perform an exact diagonaliza-
tion for this system in terms individual electrons and
holes, we can use appropriate pseudopotentials and
binding energies to obtain the low-lying states in the
spectrum. The results are presented in Fig. 4. There
is only one 6X− state (the L= 0 Laughlin �X− = 1

3
state [3]) and two bands of states in each of groupings
(ii) and (iii). A gap of 0:0626e2=� separates the L= 0
ground state from the lowest excited state.

5. Generalized composite fermion picture

In order to understand the numerical results ob-
tained in Fig. 4, it is useful to introduce a generalized
CF picture by attaching to each particle �ctitious ux
tubes carrying an integral number of ux quanta �0.
In the multi-component system [12], each a-particle
carries ux (maa − 1)�0 that couples only to charges
on all other a-particles and uxes mab�0 that couple
only to charges on all b-particles, where a and b are
any of the types of fermions. The e�ective monopole
strength seen by a CF of type a (CF-a)

is 2S∗a = 2S −
∑

b(mab − �ab)(Nb − �ab). For di�er-
ent multi-component systems we expect generalized
Laughlin incompressible states when all the hard core
pseudopotentials are avoided and CF’s of each kind
�ll completely an integral number of their CF shells
(e.g. Na = 2l∗a + 1 for the lowest shell). In other cases,
the low-lying multiplets are expected to contain di�er-
ent kinds of quasiparticles (QP-A, QP-B; : : :) or quasi-
holes (QH-A, QH-B; : : :) in neighboring �lled shells.
Our multi-component CF picture can be applied to the
12e + 6h spectrum given in Fig. 4. The agreement is
really quite remarkable and strongly indicates that our
multi-component CF picture is correct.
In this work we have emphasized that the success

of the MFCF picture is critically dependent on the na-
ture of the pseudopotential. We have presented sev-
eral examples of SR pseudopotentials for which the
CF picture works well, and several subharmonic pseu-
dopotentials for which it does not.
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