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ABSTRACT
The mean-® eld composite fermion (CF) picture successfully predicts angular

momenta of multiplets forming the lowest-energy band in fractional quantum
Hall (FQH) systems. This success cannot be attributed to a cancellation
between Coulomb and Chern± Simons interactions beyond the mean ® eld,
because these interactions have totally di� erent energy scales. Rather, it results
from the behaviour of the Coulomb pseudopotential V …L † (pair energy as a
function of pair angular momentum) in the lowest Landau level (LL). The class
of short-range repulsive pseudopotentials is de® ned that lead to short-range
Laughlin-like correlations in many-body systems and to which the CF model
can be applied. These Laughlin correlations are described quantitatively using
the formalism of fractional parentage. The discussion is illustrated with an
analysis of the energy spectra obtained in numerical diagonalization of up to
11 electrons in the lowest and excited LLs. The qualitative di� erence in the
behaviour of V …L † is shown to invalidate sometimes the mean-® eld CF picture
when applied to higher LLs. For example, the ¸ ˆ 7

3 state is not a Laughlin ¸ ˆ 1
3

state in the ® rst excited LL. The analysis of the involved pseudopotentials also
explains the success or failure of the CF picture when applied to other systems of
charged fermions with Coulomb repulsion, such as the Laughlin quasiparticles in
the FQH hierarchy or charged excitons in an electron± hole plasma.

} 1. INTRODUCTION
The discovery of the integer quantum Hall (IQH) (von Klitzing et al. 1980) and

the fractional quantum Hall (FQH) (Tsui et al. 1982) e� ects raised great interest in
the properties of a two-dimensional electron gas (2DEG) in high magnetic ® elds.
Both IQH and FQH e� ects are a manifestation of the occurrence of non-degenerate
incompressible ground states in the 2DEG spectrum at certain (integral for IQH and
fractional for FQH) Landau level (LL) ® llings. However, unlike the single-particle
cyclotron gap responsible for the IQH e� ect, the gap separating a FQH incompres-
sible ground state from the excited states is due to the electron± electron interactions
(Laughlin 1983a). While the occurrence of incompressible ground states of both
kinds results in quantization of the Hall conductance, the origins of incompressible
ground states in the IQH and FQH e� ects, that is the physics underlying the two
quantum Hall e� ects, are very di� erent.
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A simple picture of the FQH states is o� ered by the mean-® eld composite
fermion (CF) approach (Jain 1989, Lopez and Fradkin 1991, Halperin et al.
1993). The CFs are obtained in the Chern± Simons (CS) gauge transformation,
which can be interpreted as attaching to each electron a magnetic ¯ ux tube oriented
opposite to the external magnetic ® eld B. In the mean-® eld approximation, the
magnetic ® eld of these ¯ ux tubes is evenly spread over the occupied area. If the
attached ¯ ux tubes carry an even number of ¯ ux quanta, the CS transformation
without the mean-® eld approximation leaves the energy spectrum and particle
statistics unchanged. When the mean-® eld approximation is made, the e� ective
magnetic ® eld B* seen by the CFs is lower than the original ® eld B seen by the
electrons. The incompressible ground states are predicted to occur at fractional
electron ® llings that correspond to integer ® llings of CF LLs. A gas of strongly
interacting electrons is said to behave as a gas of weakly interacting CFs, and the
FQH e� ect of electrons is interpreted as the IQH e� ect of CFs.

The mean-® eld CF picture correctly predicts ® lling factors at which the FQH e� ect
has been experimentally observed. Also, in almost all cases, the mean-® eld CF predic-
tions of low-lying states of ® nite systems agree with the results of exact numerical
calculations in the lowest LL. However, a very fundamental question, namely `why
does the mean-® eld CF picture work so well?’ , is not yet completely understood. The
original conjecture that Coulomb and CS gauge interactions beyond the mean-® eld
cancel each other in the FQH systems cannot possibly be correct because the CS
interactions are measured on an energy scale proportional to B, which can be much
larger than the energy scale of the Coulomb interactions, proportional to B1=2. Because
so many experimental and numerical results in the lowest LL can be interpreted in
terms of CFs, it is extremely important to understand why the CF picture works.

It is known that the CF picture sometimes fails when applied to other systems of
identical charged fermions interacting through Coulomb-like forces. For example,
the occurrence of incompressible states only at some of the odd denominator frac-
tional ® lling factors implies that the CF model is not always valid for Laughlin
quasiparticles (QPs) in the FQH hierarchy (Haldane 1983, Laughlin 1984,
Halperin 1984) or for the CFs themselves in the CF hierarchy (Sitko et al. 1996).
The CF picture also fails for electrons in the lowest LL, when the layer thickness
exceeds certain critical value (Shayegan et al. 1990). On the other hand, the numer-
ical experiments show that it is correct for variety of repulsive interaction potentials
(e.g. V …r† ¹ ¡ln r or r¡¬ for ¬ 5 1 or even r¡1=° with an arbitrary dielectric constant
°). The original justi® cation of the CF model rested on the assumption that sponta-
neously generated gauge interactions cancelled to a substantial extent the repulsive
interactions between electrons, independent of the exact form of these interactions.
While the CF picture can be used to make certain predictions after it has been
established that a certain physical system exhibits incompressible ¯ uid ground states
with Laughlin-like correlations at appropriate conditions (magnetic ® eld, electron
density, layer thickness, disorder, material parameters, etc.), it cannot predict its own
validity for such a system. Therefore, another very fundamental problem, namely
`when does the mean-® eld CF picture work?’ , needs to be answered.

In this paper, we explain the connection between the form of the Coulomb
pseudopotential (Haldane 1987) V …L †, de® ned as the dependence of the pair inter-
action energy V on the pair angular momentum L , and the occurrence of the incom-
pressible ground states in the lowest LL of an interacting 2DEG at Laughlin± Jain
® lling factors ¸ ˆ 1

3,
1
5,

2
5,

2
7, etc. We present arguments justifying the validity of the
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mean-® eld CF picture for the lowest LL and show when and why it can be used. It is
known that the electrons in Laughlin ¸ ˆ …2p ‡ 1†¡1 states avoid a number p of pair
states with largest repulsion (Haldane 1987). The origin of incompressible FQH
states at certain other ® lling factors, such as ¸ ˆ 2

5, has been also attributed to the
ability of avoiding strongly repulsive pair states (Halperin 1983, Haldane 1987,
Rezayi and MacDonald 1991, Belkhir and Jain 1993). In order to treat formally
the ability to avoid certain pseudopotential parameters in the incompressible many-
body states we use the formalism of fractional parentage, well established in nuclear
(de Shalit and Talmi 1963) and atomic (Cowan 1981) physics. It is shown that the
condition for the validity of the mean-® eld CF picture can be more easily expressed
in terms of the behaviour of the pseudopotential V …L † than in terms of the behaviour
of the interaction potential V …r†. The condition on the form of interaction pseudo-
potential necessary for the occurrence of FQH states is given, which de® nes the class
of short-range pseudopotentials to which the mean-® eld CF picture can be applied.
It is shown that the Coulomb interaction in the lowest LL falls in this class, while in
higher LLs the mean-® eld CF picture can be used only below a certain ® lling factor.
Similarly, the success or failure of the mean-® eld CF picture applied to Laughlin
QPs, depending on the type of QPs and their ® lling factor (Sitko et al. 1997), is
shown to re¯ ect the behaviour of appropriate QP pseudopotentials. It is argued that
a QP hierarchy picture taking into account the qualitative features of involved
pseudopotentials (WoÂ js and Quinn 2000) should most naturally explain the occur-
rence and relative stability of observed odd denominator FQH states. We are not
discussing even denominator fractions (Willet et al. 1987), which are explained in
terms of pairing of electrons (Haldane and Rezayi 1988, Moore and Read 1991),
although a pseudopotential approach to the interaction between bound pairs might
be possible. The discussion throughout the paper is illustrated by exact numerical
calculations of energy spectra and parentage coe� cients in Haldane’ s (1983) sphe-
rical geometry for up to 11 electrons at ¸ º 1

3 and up to eight electrons at ¸ º 1
5 in the

lowest and excited LLs (matrix dimensions up to 3 £ 106 ), using a modi® ed Lanczos
(1950) algorithm (Haydock 1980).

The paper is organized as follows. In } 2 a brief overview of the numerical (exact
diagonalization) calculations on the Haldane sphere is given. In } 3 the mean-® eld
CF picture of the FQH states is explained. The success of the mean-® eld CF
approach is illustrated in the energy spectra of the eight-electron system in the lowest
LL, for ® lling factors between ¸ ˆ 1

3 and 1
5. In } 4 the interaction pseudopotential is

introduced. In } 5 the three-electron system is discussed. The idea of fractional par-
entage from pair states is used to characterize the three particle states. The energy
spectra in the lowest and excited LLs are analysed and interpreted in terms of
pseudopotential and fractional parentage. In } 6 the analysis of the three-electron
case is generated to an arbitrary electron number, and the numerical results for up to
11 electrons are presented. In } 7 the relation between the form of the interaction
pseudopotential and the occurrence of many-electron incompressible ground states is
explained. The Coulomb interaction in di� erent LLs is compared with the harmonic
repulsive interaction and the Coulomb interaction in the atomic shells. Hund’ s rule
appropriate for FQH systems is formulated. The short-range pseudopotential is
de® ned, to which the CF model can be applied. The prescription for the low-energy
many-electron multiplets is derived, which agrees with predictions of the mean-® eld
CF picture. The consequences of the form of pseudopotential for condensation of
QPs in the hierarchy picture are mentioned. The conclusions are contained in } 8.
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} 2. NUMERICAL STUDIES

2.1. Introduction
In a magnetic ® eld B, the lowest LL of a 2DEG can accommodate N¿ ˆ BC=¿0

electrons per area C (¿0 ˆ hc=e is the magnetic ¯ ux quantum). The measure of
electron density is the fraction of occupied states, given by the ® lling factor
¸ ˆ N=N¿, where N is the number of electrons in the area C. In the absence of
electron± electron interactions, the N¿ single-particle states are degenerate.
Therefore, these interactions entirely determine the low-energy spectrum of the sys-
tem at ¸ < 1 and cannot be treated perturbatively. Instead, numerical diagonaliza-
tion techniques have commonly been employed, which, however, limit the system to
a ® nite (small) number of electrons. Di� erent approaches restrict the motion of a
® nite number of electrons to a ® nite area C to model an in® nite 2DEG at a ® nite
density include imposing a lateral (parabolic, hard wall, etc. ) con® nement (Laughlin
1983a), using periodic boundary conditions (Haldane and Rezayi 1985b), or con® n-
ing electrons on a closed surface (Haldane 1983). The last approach has proven
particularly useful, since it naturally avoids edge e� ects. Also, the translational
symmetry of a (planar) 2DEG is preserved in the form of the rotational symmetry
of a sphere. In particular, the pair of good quantum numbers resulting from the
translational symmetry of a plane, namely the centre of mass and relative momenta,
correspond to the pair of good quantum numbers on a sphere, namely the total
angular momentum L and its projection L z (WoÂ js and Quinn 1998a). Consequently,
the degeneracies associated with centre-of -mass excitations on a plane correspond to
those associated with di� erent values of L z (jL zj 4 L ) on a sphere, and the non-
degenerate incompressible ground states of a planar 2DEG correspond to non-
degenerate (L ˆ 0) ground states on a sphere.

2.2. Haldane sphere
The magnetic ® eld B perpendicular to the surface of the Haldane sphere of radius

R is an isotropic radial ® eld produced by a magnetic monopole placed at the origin.
The monopole strength 2S is de® ned in the units of elementary ¯ ux ¿0 ˆ hc=e, so
that the total ¯ ux through the sphere is 4pBR2 ˆ 2S¿0. Dirac’ s (1931) monopole
quantization condition requires that 2S is an integer, and positive S means the
magnetic ® eld pointing outwards. The convenient units of length and energy, mag-
netic length ¶ and the cyclotron frequency !c, are given by

¶2jS j ˆ R2 ; …1†

!c ˆ S
2

·R2 : …2†

The eigenstates of the single-particle Hamiltonian are denoted by jS ; l ;mi and called
monopole harmonics (Wu and Yang 1976). They are labelled by the angular momen-
tum l and its projection m. The degenerate angular momentum shells are equivalent
to the LLs of the planar geometry. The eigenenergies are given by

En ˆ !c

2S
‰l…l ‡ 1† ¡ S 2Š

ˆ !c n ‡ 1
2

‡ n…n ‡ 1†
2S

; …3†
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where the shell (LL) index is de® ned as n ˆ l ¡ S ˆ 0 ;1 ;2 ; . . . : The degeneracy of
each shell (LL) is N¿ ˆ 2l ‡ 1.

For the FQH states at ® lling factors ¸ < 1, only the lowest spin polarized shell
(LL) need be considered. It corresponds to n ˆ 0 (l ˆ S ), and for simplicity its single-
particle states will be denoted as jmi. The spin polarized FQH states in excited LLs
will also be studied. Owing to the high (cyclotron) energy of the inter-LL excitations
in high magnetic ® elds, the FQH states at ® lling factors 2n < ¸ < 2n ‡ 1 are com-
posed of completely ® lled LLs (spin up and down) up to the …n ¡ 1†th LL, and a
partially ® lled nth LL with the ® lling factor ¸n < 1 (we discuss only the spin-polar-
ized states in partially ® lled excited LLs). The Hartree± Fock energy describing inter-
action between an electron in the nth LL and the underlying completely ® lled LLs is
a constant. Therefore, the energy spectrum of N electrons at ¸n < 1 in an isolated nth
LL describes (up to this constant) the low-energy spectrum of N ‡ 2n…2S ‡ n† elec-
trons at ¸ ˆ 2n ‡ ¸n. Since states of only one LL with a given n appear in the
r̀educed’ problem for ¸ ˆ 2n ‡ ¸n, the following simpli® ed notation will be used:
the ® lling factor ¸n will be denoted as ¸, and the states jS ; l ;mi will be denoted as jmi.

2.3. Many-body problem
The object of numerical studies is to diagonalize the electron± electron interaction

Hamiltonian

Ĥ ˆ
X

m1m2m3m4

cy
m1

cy
m2

cm3
cm4

hm1 ;m2jV jm3 ;m4i …4†

within the Hilbert space HMB of NMB ˆ N¿!‰N!…N¿ ¡ N†!Š¡1 degenerate antisym-
metric N electron states of a given (N¿-fold degenerate) LL. In the above, cy

m (cm )
creates (annihilates) an electron in the state jmi. The two-body Coulomb matrix
elements have a particularly simple form in the lowest LL (Fano et al. 1986), but
they can also be evaluated analytically for a general case of inter- or intra-LL
scattering. The N-electron Hilbert space HMB is spanned by single-particle con® g-
urations jm1 ;m2 ; . . . ;mNi, classi® ed by the total angular momentum projection
M ˆ m1 ‡ m2 ‡ ¢ ¢ ¢‡ mN. Taking advantage of the Wigner± Eckart theorem, each
…M† subspace HMB…M† can be further block diagonalized into …M ;L † subspaces
HMB…M ;L † corresponding to di� erent values of the total angular momentum L .
The Wigner± Eckart theorem tells us that, because the interaction Hamiltonian is a
scalar, its matrix element between angular momentum eigenstates jL ;M ;¬i can be
written as

hL 0 ;M 0 ;¬ 0jĤjL ;M ;¬i ˆ ¯L L 0 ¯MM 0 V ¬¬ 0…L †; …5†
that is in terms of a reduced matrix element

V ¬¬ 0…L † ˆ hL ;¬ 0jĤjL ;¬i; …6†
which is independent of M. Here, the index ¬ distinguishes di� erent states in the
same space HMB…M ;L †. Typical dimensions are given in table 1, where we list the
dimension of the total Hilbert space HMB, of the largest …M† subspace HMB…0†, of
the largest …M ;L † subspace Hmax

MB …M ;L † and of the …M ;L † subspace containing the
Laughlin L ˆ 0 ground state, HMB…0 ;0†, for between six and 11 electrons at the
® lling factor ¸ ˆ 1

3. Even when both M and L are resolved, exact diagonalization
becomes di� cult when N > 10 and N¿ > 28:
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The calculations give the eigenenergies E as a function of the total angular
momentum L . The numerical results for the lowest LL always show one or more
L multiplets forming a low-energy sector (or low-energy band). The spectra for N in
the range 6± 20 (depending on the ® lling factor) are available in literature and have
been extensively analysed. As an example, in ® gures 1 and 2 we show the energy
spectra obtained for eight electrons in the lowest LL, at values of 2S between 21 and
37; the spectra for 2S < 21 can be found in earlier numerical studies (He et al. 1992).
The Laughlin ® lling factors ¸ ˆ 1

3 and 1
5 occur at 2S ˆ 21 and 35, and the Jain ® lling

factors ¸ ˆ 2
7 and 2

9 occur at 2S ˆ 26 and 30 respectively. At 2S ˆ 28, an even
denominator ® lling of ¸ ˆ 1

4 occurs. The low-energy bands are indicated by open
circles. For some values of 2S these bands contain subbands indicated by broken
lines. The physical meaning of the bands indicated in ® gures 1 and 2 will be explained
in } 3.2

} 3. COMPOSITE FERMION APPROACH

3.1. Introduction
In the (CS) transformation, an equal and even number (2p) of elementary ¯ uxes

¿0 (a ® ctitious ¯ ux tube of strength 2p¿0 ) oriented opposite to the original magnetic
® eld B is attached to each electron. The CFs obtained in this way carry electric
charge and magnetic ¯ ux. The CS transformation is a gauge transformation and
thus the CF energy spectrum is identical with the original electron spectrum.

Since attached ¯ uxes are localized on electrons and the magnetic ® eld acting on
each electron is unchanged, the classical Hamiltonian of the system is also
unchanged. However, the quantum Hamiltonian includes additional terms describ-
ing an additional charge± ¯ ux (CS) interaction, which arises from the Aharonov±
Bohm phase attained when one electron’ s path encircles the ¯ ux tube attached to
another electron. One di� culty in treatment of the CS interaction results from the
fact that it contains both two- and three-body terms; another is the absence of a
small parameter with which to construct a perturbation expansion.

3.2. Mean-® eld approximation
In the mean-® eld approach, the magnetic ® eld due to attached ¯ ux tubes is evenly

spread over the occupied area C. The mean-® eld CFs obtained in this way move in
an e� ective magnetic ® eld B* ˆ B ¡ 2p¿0 N=C. An e� ective ® lling factor ¸* seen by
one CF is de® ned as

1410 A. WoÂ js and J. J. Quinn

Table 1. The dimensions N¿ of the single-particle Landau level, dimensions NMB of the total
many body Hilbert space HMB, dimensions NMB…0† of the largest …M† subspace
HMB…0†, dimensions Nmax

MB …M ; L † of the largest …M ; L † subspace Hmax
MB …M ;L †, and

dimensions NMB…0;0† of the …M ;L † subspace HMB…0;0† containing the Laughlin
L ˆ 0 ground state of N ˆ 6± 11 electrons at the ® lling factor ¸ ˆ 1

3.

N N¿ NMB NMB…0† Nmax
MB …M ;L † NMB…0;0†

6 16 8 008 338 24 6
7 19 50 388 1 656 86 10
8 22 319 770 8 512 352 31
9 25 2 042 975 45 207 1 533 84

10 28 13 123 110 246 448 7 069 319
11 31 84672 315 1 371 535 33 787 1 160
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Figure 1. The energy spectra of eight electrons in the lowest Landau level at the monopole
strength 2S between 21 and 28: (a) 2S ˆ 21 corresponds to the ® lling factor ¸ ˆ 1

3, the
lowest-energy state at L ˆ 0 is the Laughlin ground state; (b) 2S ˆ 22 ; (c) 2S ˆ 23 ; (d)
2S ˆ 24 ; (e) 2S ˆ 25 ; ( f ) 2S ˆ 26, ¸ ˆ 2

7, Jain ground state at L ˆ 0; (g) 2S ˆ 27;
(h) 2S ˆ 28, ¸ ˆ 1

4. The low-energy states selected by the CS transformation with
p ˆ 1 and p ˆ 2 are indicated by open circles and broken lines, respectively.
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Figure 2. The energy spectra of eight electrons in the lowest Landau level at the monopole
strength 2S between 30 and 37; (a) 2S ˆ 30 corresponds to the ® lling factor ¸ ˆ 2

9, the
lowest-energy state at L ˆ 0 is the Jain ground state; (b) 2S ˆ 31 ; (c) 2S ˆ 32 ; (d)
2S ˆ 33 ; (e) 2S ˆ 34 ; ( f ) 2S ˆ 35, ¸ ˆ 1

5, Laughlin ground state at L ˆ 0; (g) 2S ˆ 36 ;
(h) 2S ˆ 37. The low-energy states selected by the CS transformation with p ˆ 2 and
p ˆ 3 are indicated by open circles and broken lines, respectively.



…̧ *†¡1 ˆ ¸¡1 ¡ 2p ; …7†
so that

B*¸* ˆ B¸ ˆ N
C

¿0: …8†

Negative ¸* means negative B* (oriented opposite to B). It has been shown that the
mean-® eld Hamiltonian of non-interacting CFs gives a good qualitative description
of the low-lying states of interacting electrons in the lowest LL. The Jain (1989)
sequence of incompressible ground states is predicted at ® lling factors ¸ for which ¸*
is an integer, and the ¸* ˆ 1 states correspond to Laughlin (1983a) ¸ ˆ …2p ‡ 1†¡1

states. If ¸* is not an integer, the low-lying states contain a number of QPs
(NQP 4 N) in the neighbouring incompressible state with integer ¸*.

On a sphere, an e� ective CF monopole strength is

2S* ˆ 2S ¡ 2p…N ¡ 1†; …9†
and l* ˆ jS*j plays the role of the angular momentum of the lowest CF shell (Chen
and Quinn 1996). If n lowest CF LLs at 2S* are ® lled completely by N CFs, the
corresponding N-electron state at 2S is incompressible. The states at other values of
2S are compressible and contain NQP QPs in the neighbouring incompressible state
of an equal number of N electrons at 2S inc,

NQP ˆ n…j2S*incj ¡ j2S*j†: …10†
Here 2S*inc is the e� ective monopole strength calculated for the incompressible state,
that is 2S*inc ˆ 2S inc ¡ 2pinc…N ¡ 1†, and n is an integral number of completely ® lled
CF LLs. Positive NQP corresponds to quasielectrons (QEs) in the …n ‡ 1†th (lowest
unoccupied) CF shell, each with angular momentum lQE ˆ l*‡ n. Negative NQP
corresponds to quasiholes (QHs) in the nth (highest occupied) CF shell, each with
angular momentum lQH ˆ l*‡ n ¡ 1. Di� erent values of 2S that lead to the same
value of l* ˆ jS*j are equivalent and their low-energy bands contain the same L
multiplets.

It is noteworthy that the CS transformation applied to the state at 2S can have a
di� erent ¯ ux strength (2p) than that (2pinc ) applied to the incompressible state 2S inc.
Consequently, alternative pictures of the …N;2S† state, containing di� erent numbers
of QPs and/or types of QP, can be obtained (Yi et al. 1996). Writing pinc and p
explicitly, equation (10) can be written as

NQP ˆ n…j2S inc ¡ 2pinc…N ¡ 1†j ¡ j2S ¡ 2p…N ¡ 1†j†: …11†
The original spectrum of interacting electrons is similar to that of non-interacting
mean-® eld CFs in a sense that, ® rstly, the lowest band of angular momentum multi-
plets contains states of the minimum number of QPs consistent with the values of N
and 2S and, secondly, neighbouring excited bands contain additional QE± QH pairs.

Let us illustrate the success of the mean-® eld CF approach in predicting the
lowest band of multiplets in the example of an eight-electron system. The sequence
of incompressible states is given in table 2. Eight mean-® eld CFs ® ll completely one
CF LL (n ˆ 1) at j2S*j ˆ 7 and two CF LLs (n ˆ 2) at j2S*j ˆ 2. Following equa-
tion (9), the sequences of incompressible states for CF ® llings n ˆ 1 and 2 are
generated by varying p ˆ 0, §1, §2 ; . . .. States listed in table 2 (¸ ˆ 2 ;1 ;2

3,
2
5,

1
3,

2
7,

2
9, and 1

5) are all the incompressible eight-electron states at ® lling factors greater than
or equal to ¸ ˆ 1

5 ( ® lling of more than two CF LLs requires N > 8). The states
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outside the incompressible sequence of 2S inc ˆ 2 ;7 ;12 ;16 ;21 ;26 ;30 ;35 ; . . . are com-
pressible and contain an appropriate number of QPs, given by equation (10).

The spectra of an eight-electron system in the lowest LL for values of 2S between
21 and 37, that is for the ® lling factors ¸ from 1

3 down to below 1
5, are shown in ® gures

1 and 2. In ® gure 1, the open circles and broken lines indicate bands of multiplets
predicted in the mean-® eld CF picture as the lowest-energy states of CFs for p ˆ 1
and p ˆ 2, respectively. In ® gure 2, all shown states belong to the lowest band
corresponding to p ˆ 1, and the open circles and broken lines indicate bands
obtained for p ˆ 2 and p ˆ 3 respectively. The range of 2S shown in ® gure 1
alone covers all values of l* from N ¡ 1 to 0 (for p ˆ 1) and thus exhausts all
possible con® gurations of QPs for the eight-electron system. Let us analyse the
spectra in ® gure 1 in greater detail.

At 2S ˆ 21 the CS transformation with p ˆ 1 gives 2S* ˆ 7. The lowest CF LL
is completely ® lled (¸* ˆ n ˆ 1) and the Laughlin incompressible ¸inc ˆ 1

3 state with
L ˆ 0 is formed. The CS transformation with p ˆ 2 gives 2S* ˆ ¡7 and the equiva-
lent interpretation of the ground state. At 2S ˆ 22 the CS transformation with p ˆ 1
gives 2S* ˆ 8. The lowest CF LL has degeneracy of 2S*‡ 1 ˆ 9; so it holds N ˆ 8
CFs and one QH with lQH ˆ 4 (QH in the ¸inc ˆ 1

3 state). Therefore, the low-energy
band contains a single multiplet with L ˆ 4. The CS transformation with p ˆ 2 gives
2S* ˆ ¡6, which corresponds to a completely ® lled lowest CF LL and one QE with
lQE ˆ 4 in the ® rst excited CF LL. Depending on the applied CS transformation, the
L ˆ 4 ground state can be viewed as a state of either a single QE or a single QH in
the appropriate CF LL (Yi et al. 1996). The low-energy multiplets obtained using the
CS transformation with p ˆ 1 at 2S ˆ 23 ;24 ; . . . ;28 contain 2 ;3 ; . . . ;7 QHs in the
lowest CF LL (i.e in the ¸inc ˆ 1

3 state), each with angular momentum
lQH ˆ 9

2 ;5; . . . ;7 respectively. For example, at 2S ˆ 24 the band of states of three
QHs each with lQH ˆ 5 contains the following multiplets :
L ˆ 0 ;2 ;3 ;42 ;5 ;62 ;7 ;8 ;9 ;10 and 12. At 2S 5 23 the CS transformation with p ˆ 2
selects a subset of multiplets out of those obtained with p ˆ 1, and the low-energy
subband corresponding to p ˆ 2 develops in the p ˆ 1 band. For example, the low-
energy p ˆ 2 subband predicted for 2S ˆ 23 (2S* ˆ ¡5) contains two QEs each with
lQE ˆ 7

2, and thus L ˆ 0, 2, 4 and 6. At 2S ˆ 26 the CF monopole strength for p ˆ 2
is 2S* ˆ ¡2 and the two lowest CF LLs are completely ® lled (¸* ˆ n ˆ 2). The
ground state is the incompressible Jain ¸inc ˆ 2

7 state with L ˆ 0. At 2S ˆ 25 the
CF monopole strength for p ˆ 2 is 2S* ˆ ¡3 and at 2S ˆ 27 it is 2S* ˆ ¡1. In both
cases, the low-energy band contains two QPs each with lQP ˆ 5

2 in the ¸inc ˆ 2
7 state
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Table 2. The incompressible states of eight electrons; ® lling factor ¸ 5 1
5.

n ˆ 1;2S* ˆ 7 n ˆ 2;2S* ˆ 2

p j2S j ¸ j2S j ¸

¡2 21 1
3 26 2

7

¡1 7 1 12 2
3

0 7 1 2 2
1 21 1

3 16 2
5

2 35 1
5 30 2

9



(two QEs at 2S ˆ 25 and two QHs at 2S ˆ 27). For 2S ˆ 24 one obtains 2S* ˆ ¡4
and the lowest-energy band contains three QEs, each with lQE ˆ 3. Finally, for
2S ˆ 28, one obtains 2S* ˆ 0 and one QH with lQH ˆ 2 in the second excited CF
LL. The e� ective magnetic ® eld acting on the CFs vanishes, and this state is assigned
an even denominator ® lling factor ¸ ˆ 1

4.
Higher-energy bands, containing multiplets with additional QE± QH pairs, are

more di� cult to identify in ® gures 1 and 2 than the lowest bands. However, for
2S ˆ 21, one can easily see the low-lying band of states at L ˆ 2, 3, 4, 5, 6, 7 and 8,
which correspond to the states of one QE± QH pair (lQE ˆ 9

2 and lQH ˆ 7
2) in the

mean-® eld CF picture. Similarly, the band of QE± QH pair states for 2S ˆ 26 occurs
at L ˆ 2, 3, 4, and 5 (lQE ˆ 3 and lQH ˆ 2). For 2S ˆ 25 the lowest band contains
two QHs, each with lQH ˆ 5

2, in the ¸* ˆ 2 CF state (L ˆ 0, 2, and 4). The ® rst
excited band has two subbands at the same CF energy. One contains states corre-
sponding to three QHs, each with lQH ˆ 5

2, and one QE with lQE ˆ 7
2. The

allowed multiplets of such QP system are L ˆ 12, 23, 33, 43, 53, 62, 7, and 8. The
other contains states of one QH in the lowest CF LL (lQH1 ˆ 3

2) and one QH in the
® rst excited CF LL (lQH2 ˆ 5

2). The allowed multiplets in this subband are L ˆ 1, 2, 3
and 4. One can identify in ® gure 1 ( f ) a few multiplets with highest angular momenta
(L ˆ 8, 7, 62 ; . . .) of this band.

The bands of states containing an increasing number of QE± QH pairs are more
clearly visible in the density of states (DOS), dN …E†=dE, plotted in ® gure 3. Figures
3 (a) and (b) show the data for 2S ˆ 21 (Laughlin ¸ ˆ 1

3 ground state) and 2S ˆ 22
(one QH in the ground state) respectively. The continuous DOS is obtained by
broadening of discrete energy levels with Gaussians :

dN …E†
dE

ˆ p1=2

¯

X

L ¬

…2L ‡ 1†exp ¡
jE ¡ EL ¬j2

¯2… †; …12†

where the summation goes over all L multiplets (distinguished by di� erent ¬), and
the normalization pre-factor guarantees that

„
‰dN …E†=dEŠ dE ˆ N , the total num-

ber of states. The thin lines were obtained for ¯ ˆ 0:001 e2=¶ and the thick lines
correspond to ¯ ˆ 0:02 e2=¶. The thick lines, free of noise characteristic of the dis-
crete spectrum, reveal a series of equidistant peaks and/or steps in the DOS. The
peaks corresponding to the ground states are hardly visible and their positions have
been indicated by open circles. A number of higher peaks (at lower energies) or
plateaux (at higher energies) are the remnants of the CF bands with increasing
numbers of QPs. The quasiperiodic character of the DOS spectrum is even more
pronounced in the derivatives of the DOS, shown in the insets (calculated only for
¯ ˆ 0:02 e2=¶). The plateaux in dN dE correspond to the minima in d2N =dE2, and
the average distance between the neighbouring minima is about 0:094 e2=¶. In the
mean-® eld CF picture, this quantity is interpreted as the energy of a QE± QH pair in
the Laughlin ¸ ˆ 1

3 ground state.
The Fermi-liquid picture can be further applied to the QPs (Sitko et al. 1996).

The incompressible state is treated as a `vacuum’ state, and the QPs created in this
state interact with one another through appropriate pseudopotentials. The pseudo-
potentials were determined by studying the energy spectra corresponding to two
QPs, and then used to calculate the QP± QP interaction energy in states correspond-
ing to a larger number of QPs. Good agreement with the actual low-energy bands of
the electron systems was obtained.
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3.3. Energy scales and ¯ uctuations beyond the mean-® eld approximation
Despite the success of the mean-® eld CF approach in describing the low-energy

spectra of interacting electrons in many numerical (exact) calculations carried out for
® nite systems, the reason for its success still remains a puzzle. The original conjecture
that the CF transformation converts a system of strongly interacting electrons into
one of weakly interacting CFs cannot possibly be correct because the CS interactions
among ¯ uctuations are measured on an energy scale proportional to !c / B, which
can be much larger than the energy scale of the Coulomb interactions, proportional
to e2=¶ / B1=2. This is demonstrated in ® gure 4, where the original energy spectrum
of free electrons is compared with that of non-interacting mean-® eld CFs (note that
the degeneracy of multiplets is not shown). Clearly, inclusion of the electron± electron
Coulomb interaction with characteristic energy as small as indicated in ® gure 4 by a
grey rectangle cannot reproduce the separation of levels present in the mean-® eld CF
spectrum. Because so many results can be successfully interpreted in terms of CFs,
the understanding of the actual reason for the success of the mean-® eld CF model, as
well as de® ning its limitations and range of applicability, is extremely important.
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Figure 3. The DOS dN =dE for the eight-electron spectra at (a) 2S ˆ 21 and (b) 2S ˆ 22.
The thin and thick lines correspond to two di� erent broadenings of discrete energy
levels. The inset shows the di� erential DOS d2N =dE2. The plateaux in dN =dE and the
minima in d2N =dE2 correspond to the bands of states with an increasing number of
QE± QH pairs.



} 4. PSEUDOPOTENTIAL OF THE COULOMB INTERACTION
The two-body interaction Hamiltonian of the many-body system can be

expressed as

Ĥ ˆ
X

i<j

X

L

V …L † P̂ij…L †: …13†

Here, V …L † is the two-particle interaction pseudopotential (Haldane 1987) de® ned as
the interaction energy of a pair in the eigenstate jL i of angular momentum L ,

ĤjL i ˆ V …L †jL i …14†
and P̂ij…L † is the projection operator onto the subspace with the pair ij in the state
jL i. The pair angular momentum L measures the average squared electron± electron
distance d2. It can be shown that within the nth LL of the Haldane sphere

d̂2

R2
ˆ 2 ‡ S2

l…l ‡ 1† 2 ¡ L̂ 2

l…l ‡ 1†… †: …15†

Note that 0 < d2 < …2R†2 and d2 ² 2R2 for 2S ˆ 0.
Because of the con® nement of single-particle states to one (lowest) LL, the

number of pair states is strongly limited, and the electron± electron interaction poten-
tial enters the Hamiltonian H only through a small set of pseudopotential para-
meters. This reveals the magnetic ® eld quantization of electron± electron interaction,
that is electron± electron separation (Laughlin 1983b). On a Haldane sphere with a
given 2S , a ® nite number of these parameters, V …2l ¡ R†, where R 4 2l is an odd
integer, determines many-body eigenstates and eigenenergies. Using the relative
angular momentum R instead of the eigenvalue L of total angular momentum
L̂ ˆ l̂1 ‡ l̂2 to label pair states and pseudopotential coe� cients allows meaningful
comparison of the pseudopotentials in the planar system and in spherical systems
with di� erent l (or 2S ). On a sphere, R is de® ned as

R ˆ 2l ¡ L ; …16†
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Figure 4. The energy spectra of (a) non-interacting electrons and (b) non-interacting CFs.
The characteristic energy of the Coulomb interaction is indicated in (a) by a grey
rectangle.



and on a plane it is equal to the angular momentum associated with the relative
coordinate r ˆ r1 ¡ r2. In both cases, larger R means larger separation (see equation
(15) for the sphere). Figure 5 shows the pseudopotentials V …R† calculated for the
lowest and the ® rst two excited LLs (n ˆ 0, 1 and 2) for the plane and for the
Haldane sphere with l ˆ 15

2 , 10 and 25
2 . All pseudopotentials V …R† in ® gure 5 decrease

with increasing R.
The important part of the pseudopotential spectrum is where its slope is the

highest. It follows from equation (15) that each pair state with a given L corresponds
to a certain average separation d and, roughly, d / R. A large slope dV =dR means a
large energy gradient, that is a large e� ective force, that would describe two point
charges at a distance d . This e� ective force is solely due to the Coulomb force but
takes into account di� erent spreads of the electron wavefunctions in pair states for
di� erent 2S , l and R. As will be shown later, the crucial di� erence between the lowest
LL (® gure 5 (a)) and excited LLs (® gures 5 (b) and (c)) is that, in the former case,
V …R† decreases more quickly at the smallest values of R.

Let us de® ne a model hard core pseudopotential V HC for which

V HC…R† ¾ V HC…R ‡ 2†;

V HC…R ¡ 2† ¡ V HC…R† ¾ V HC…R† ¡ V HC…R ‡ 2†
…17†

1418 A. WoÂ js and J. J. Quinn

Figure 5. The pseudopotentials V of the Coulomb interaction in (a) the lowest, (b) the ® rst
excited and (c) the second excited LLs as functions of the relative angular momentum
R : (*), plane; (!), Haldane sphere with l ˆ 15

2 ; (^), Haldane sphere with l ˆ 10 ; (*),
Haldane sphere with l ˆ 25

2 .



for all values of R. The V HC is an ìdeal’ short-range pseudopotential (the class of
short-range pseudopotentials leading to the similar Laughlin-like short-range cor-
relations will be formally de® ned in } 7.5). The conditions (17) can be rewritten as
dV =dR ½ 0 and d2V =dR2 ¾ 0, where the derivatives are to be understood as ® nite
di� erences. Clearly, in the low-lying many-body eigenstates of V HC, electrons must
avoid as much as possible pair states with largest repulsion, that is pair states with
the smallest separation or smallest values of R. The many-body states that avoid
certain values of R can be constructed explicitly using parentage or grandparentage
coe� cients. In the following sections we shall investigate in detail the connection
between the low-lying states of the FQH systems and the avoidance of pair states
with largest repulsion.

} 5. THREE-ELECTRON SYSTEM

5.1. Coe� cients of fractional parentage
We begin the discussion of the three-electron case by listing in table 3 all possible

L multiplets appearing in the spectrum for a given single-particle angular momentum
l. An eigenfunction of three electrons each of angular momentum l whose total
angular momentum is L will be denoted by jl3 ;L ¬i, with an index ¬ distinguishing
di� erent multiplets with the same L . This state can be written as

jl3 ;L ¬i ˆ
X

L 12

FL ¬…L 12†jl2 ;L 12; l ;L i ; …18†

a combination of product states jl2 ;L 12; l ;L i in which l1 ˆ l2 ˆ l are added to obtain
pair angular momentum L 12 , and then l3 ˆ l is added to L 12 to obtain total angular
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Table 3. The number of times that an L multiplet appears for a system of three electrons of
angular momentum l. The top half of the table is for even values of 2l, and the bottom
half is for values of 2l. Blank spaces are equivalent to zeros.

Number of times that an L multiplet appears for the following 2L values

2l 0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36

2 1
4 1 1
6 1 1 1 1 1
8 1 2 1 1 1 1 1

10 1 1 1 2 1 2 1 1 1 1 1
12 1 2 1 2 2 2 1 2 1 1 1 1 1
14 1 1 1 2 1 3 2 2 2 2 1 2 1 1 1 1 1

2l 1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37

3 1
5 1 1 1
7 1 1 1 1 1 1
9 1 1 1 2 1 1 1 1 1

11 1 1 1 2 2 1 2 1 1 1 1 1
13 1 1 1 2 2 2 2 2 1 2 1 1 1 1 1



momentum L (de Shalit and Talmi 1963, Cowan 1981). Note that the state jl3 ;L ¬i is
antisymmetric under interchange of any pair of particles 1, 2 and 3, while states
jl2 ;L 12; l ;L i are antisymmetric only under interchange of particles 1 and 2. The
factor FL ¬…L 12†, or FL ¬…R† where R ˆ 2l ¡ L 12, is called the coe� cient of fractional
parentage (CFP) associated with pair angular momentum L 12.

The two-particle interaction matrix element can be conveniently expressed
through the CFPs and the pseudopotential coe� cients (Sitko et al. 1996) :

hl3 ;L ¬jV jl3 ;L ­ i ˆ 3
X

R
FL ¬…R†FL ­ …R†V …R†: …19†

If the state jl3 ;L ¬i is an eigenstate of the interacting system, its energy is

EL ¬ ˆ 3
X

R
F L ¬…R†V …R†; …20†

where F L ¬ ˆ jFL ¬j2. The CFPs for three particles with given l can be derived analy-
tically or found in nuclear (de Shalit and Talmi 1963) or atomic (Cowan 1981)
physics books. Note, however, that the squared CFPs, which appear in equation
(20) and measure the probability that a pair of electrons ij are in the pair state of
angular momentum R can be expressed as

F L ¬…R† ˆ hL ¬jP̂ij…R†jL ¬i: …21†
It follows from equation (13) that they can be calculated quite easily for any state
jL ¬i as the expectation value of the s̀elective interaction’ Hamiltonian ĤR, whose
only non-vanishing pseudopotential parameter is V …R† ˆ 1:

F L ¬…R† ˆ 1
3 hL ¬jĤRjL ¬i: …22†

5.2. Hard-core repulsive interaction
For the hard-core pseudopotential de® ned in equation (17), the low-lying states

must avoid low values of R as much as possible within the available Hilbert space.
They have the maximum allowed number of vanishing CFPs which correspond to
lowest values of R, F L ¬…1† ˆ F L ¬…3† ˆ ¢ ¢ ¢ ˆ 0. In such states, all pairs ij have zero
projection on to pair states with a number of lowest values of R,

X

i<j

X

Rˆ1 ;3;...

P̂ij…R†jL ¬i ˆ 0 ; …23†

or with a number of pseudopotential parameters associated with the strongest repul-
sion, V …1†, V …3†; . . . :

For three electrons (fermions), the angular momenta of states in which
R 5 3;5 ; . . . ; for all pairs can be predicted from the following argument (WoÂ js
and Quinn 1998b). If we choose R ˆ 1 for the pair of electrons 1 and 2 (i.e.
L 12 ˆ 2l ¡ 1) and add to L 12 the same single-particle angular momentum l of the
third electron, then the total angular momentum L must satisfy the vector addition
rule, jL 12 ¡ lj 4 L 4 L 12 ‡ l. The antisymmetrization of the total wavefunction will
eliminate some of the values of L from this range, but it is guaranteed that no states
with L smaller than the minimum value, L < l ¡ 1, can have non-vanishing paren-
tage from R ˆ 1. In table 3, we have underlined the three-electron states with
L < l ¡ 1, which must therefore have R 5 3 for all pairs. The next higher value of
R to avoid is 3, and, using the same argument as above, we obtain that all states with
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L < l ¡ 3 must have R 5 5 (double underlined in table 3). Further, states with
L < l ¡ 5 must all have R 5 7 (triple underlined in table 3), and so on. In table 4
we list the values of 2L for which the CFP with R ˆ 1 or with R 4 3 or with R 4 5
must vanish, that is R 5 3, 5 or 7 respectively. The L ˆ 0 states for 2S ˆ 6, 10 and
14 are the Laughlin ground states with ¸ ˆ 1

3,
1
5, and 1

7, respectively.
Note that the multiplets listed at 2l with R 5 Rmin are always the same as those

at 2l ¡ 2p…N ¡ 1† with R 5 Rmin ¡ 2p. However, for the lowest LL (l ˆ S ),
2S ¡ 2p…N ¡ 1† is just 2S*, the e� ective monopole strength of CFs! This very impor-
tant result remains true for any number of electrons, and will be discussed in more
detail in } 6.2.

At 2S ˆ 8, two L ˆ 3 multiplets occur (see table 3) and the interparticle inter-
action must be diagonalized in this two-dimensional subspace. The CFP for R ˆ 1
does not vanish identically in entire subspace because L 5 l ¡ 1. However, a linear
combination can be constructed for which it does. For a model pseudopotential with
V …1† > 0 and all other parameters vanishing, this would be the lower (zero-energy)
eigenstate. At 2S ˆ 14 there are three allowed L ˆ 6 multiplets, out of which one
linear combination can be constructed with zero CFP for both R ˆ 1 and 3, and
another without CFP for R ˆ 1 but with signi® cant CFP for R ˆ 3.

5.3. Coulomb interaction in the lowest and excited L andau levels
How does this work for the actual Coulomb interaction? Figure 6 shows the

Coulomb energy as a function of the total angular momentum L for the system of
three electrons each with l ˆ 7, that is at the ® lling factor ¸ ˆ 1

7. Figure 6 (a) corre-
sponds to the lowest LL and ® gures 6 (b) and (c) to two excited LLs. The insets show
the spectra for l ˆ 3 (® lling factor ¸ ˆ 1

3). Since the individual electron angular
momentum l ˆ S ‡ n is the same in ® gures 6 (a), (b) and (c), the three-electron
Hilbert spaces contain the same L multiplets. The di� erence between the spectra
in ® gures 6 (a), (b) and (c) comes from di� erent Coulomb matrix elements, that is
di� erent pseudopotentials V …R†, in di� erent LLs.

For the lowest LL, the Coulomb interaction plotted in ® gure 5 (a) behaves like
the hard-core repulsion V HC de® ned in equation (17). The energy spectrum in ® gure
6 (a) splits into bands of states with no parentage from pair states with R < 7 (full
diamonds), R < 5 (open circles) and R < 3 (full circles), and the remaining states
with parentage from all pair states including R ˆ 1 (open squares). The CFPs, which
are expected to vanish identically for any pseudopotential (see the last column in
table 4) or which would vanish for the eigenstates of the interaction V HC de® ned in
equation (17), indeed vanish or are very small (F < 0:01) for the eigenstates of the
Coulomb interaction. This means that the Coulomb interaction within the lowest LL
acts like V HC and the two interactions have essentially identical eigenstates.
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Table 4. The allowed values of 2L for a three-electron system that must have R 5 3, 5 and 7.
The listed values correspond to the underlined L multiplets in table 3.

Allowed values for the following 2l values

6 7 8 9 10 11 12 13 14

2L …R 5 3† 0 3 2 3, 5 0, 4, 6 3, 5, 7 2;62 ;8 3;5;7;92 0;4;6 ;82 ;10
2L …R 5 5† 0 3 2 3, 5 0, 4, 6
2L …R 5 7† 0



Since V …1† ¡ V …3† > V …3† ¡ V …5† > ¢ ¢ ¢ in ® gure 5 (a), the gap between the high-
est-energy band (R 5 1) and the lower bands is the largest, the gap below the R 5 3
band is the next largest, etc. The lowest band (R 5 7) consists of only one state at
L ˆ 0. This is the Laughlin ¸ ˆ 1

7 ground state. The excitation gap above the ¸ ˆ 1
7

state is governed by V …5† ¡ V …7† and, as might be expected, it is almost unobser-
vable. Note also that the ® rst excited band in ® gure 6 (a) containing states with
R 5 5 consists of multiplets at L ˆ 2, 3, 4 and 6, in contrast with the mean-® eld
CF prediction (L ˆ 1, 2 and 3).

The inset in ® gure 6 (a) shows the spectrum for l ˆ 3. The L ˆ 0 ground state has
F …1† ˆ 0 (see the ® rst column in table 4) ; this is the Laughlin ¸ ˆ 1

3 state. The
structure of energy the spectrum for l ˆ 3 is very similar to that within the two
lowest bands for l ˆ 7. This is because the Coulomb interaction for n ˆ 0 acts like
hard-core repulsion and decreasing angular momentum by p…N ¡ 1† is equivalent to
introduction of a hard core which forbids pair states with R < 2p ‡ 1 (see ® gure 7
and the discussion in the following section).

The Coulomb pseudopotentials for n ˆ 0 in ® gure 5 (a) and for n ˆ 1 in ® gure
5 (b) behave similarly for R 5 3. In consequence, the two lowest bands of states in
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Figure 6. The Coulomb energy of three electrons each with l ˆ 7 in (a) the lowest, (b) the ® rst
excited and (c) the second excited LLs: (^) states with R 5 7, that is
F…1† º F…3† º F…5† º 0 and F …7† > 0; (*), R 5 5, that is F…1† º F…3† º 0 and
F…5† > 0; (*), R 5 3, that is F…1† º 0 and F…3† > 0; (&), R 5 1, that is F…1† > 0.
The ground states in all frames are the Laughlin ¸ ˆ 1

7 states within di� erent LLs. The
insets show the spectra for l ˆ 3; the ground state for n ˆ 0 is the Laughlin ¸ ˆ 1

3 state.



® gure 6 (a) and (b) look similar. The CFPs, which are expected to be small, are found
to be smaller than 0.01 for both n ˆ 0 and n ˆ 1. However, for the smallest R, the
condition V …1† ¡ V …3† ¾ V …3† ¡ V …5† is no longer satis® ed for n ˆ 1. Close to
R ˆ 1, the Coulomb pseudopotential for n ˆ 1 decreases too slowly with increasing
R, and its eigenstates, having some parentage from the R ˆ 1 pair state, are sig-
ni® cantly di� erent from those of the hard-core repulsion. For example, the states at
L ˆ 10 and 12 indicated by full circles in ® gure 6 (b) both have signi® cant parentage
from R ˆ 1, F…1† º 0:11, while the two other states with L ˆ 10 and 12, indicated
by open squares, both have F…1† º 0:23, only twice as large. For the same reason,
there is almost no gap above the R 5 3 band for n ˆ 1, in contrast with the n ˆ 0
spectrum.

Di� erent behaviour of V …R† for n ˆ 1 at small values of R has a much more
pronounced e� ect on the l ˆ 3 spectrum shown in the inset. The L ˆ 0 state must
have F …1† ˆ 0 because of the angular momentum addition argument (see table 4),
but it is no longer the ground state. Let us stress this result : for three electrons, the
Laughlin-like ¸ ˆ 1

3 state is not the ground state in the ® rst excited LL. Hence, the
Laughlin-like ¸ ˆ 2 ‡ 1

3 state is not the ground state of the 13-electron system at
2S ˆ 4. However, the Laughlin-like ¸ ˆ 2 ‡ 1

7 state remains the ground state of 29
electrons at 2S ˆ 12.

For n ˆ 2, the Coulomb pseudopotential in ® gure 5 (c) deviates from that for
n ˆ 0 at all R < 5, and the only gap which persists in the spectrum in ® gure 6 is that
above the R 5 7 ground state. Higher bands, containing states with the smallest
appropriate CFP (which would be zero for the hard-core repulsion) are not even
ordered as those for n ˆ 0 or 1. In the inset, the Laughlin ¸ ˆ 1

3 state with R 5 3 is
the highest-energy state for n ˆ 2.

} 6. MANY-ELECTRON SYSTEMS

6.1. Coe� cients of fractional grandparentage
Equations (18) and (19) can be generalized to the case of an arbitrary number of

electrons. An antisymmetric wavefunction jlN ;L ¬i of N electrons each with angular
momentum l that are combined to give a total angular momentum L can be written
as (de Shalit and Talmi 1963, Cowan 1981)

jlN ;L ¬i ˆ
X

L 12

X

L 0¬ 0

GL ¬;L 0¬ 0…L 12†jl2 ;L 12; lN¡2 ;L 0¬ 0; L i: …24†

Here, jl2 ;L 12; lN¡2 ;L 0¬ 0; L i denote product states in which angular momenta
l1 ˆ l2 ˆ l of two electrons are added to obtain the pair angular momentum L 12 ,
then angular momenta l3 ˆ l4 ˆ ¢ ¢ ¢ ˆ lN ˆ l of remaining N ¡ 2 electrons are added
to obtain the angular momentum L 0 (di� erent states with this angular momentum
are labelled with di� erent ¬ 0), and ® nally L 12 is added to L 0 to obtain the total
angular momentum L . The state jlN ;L ¬i is totally antisymmetric, while the states
jl2 ;L 12; lN¡2 ;L 0¬ 0; L i are antisymmetric under interchange of particles 1 and 2, and
under interchange of any pair of particles 3;4; . . . ;N. The factor GL ¬;L 0¬ 0…L 12†, or
GL ¬;L 0¬ 0…R† where R ˆ 2l ¡ L 12 , is called the coe� cient of fractional grandparentage
(CFGP). For N ˆ 3, it is equivalent to the CFP: GL ¬;l…R† ² FL ¬…R†.

The two-particle interaction matrix element expressed through the CFGPs is
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hlN ;L ¬jV jlN ;L ­ i ˆ N…N ¡ 1†
2

X

R

X

L 0¬ 0

GL ¬;L 0¬ 0…R†GL ­ ;L 0¬ 0…R†V …R†: …25†

For an interaction eigenstate, its energy is

EL ¬ ˆ N…N ¡ 1†
2

X

R
GL ¬…R†V …R†; …26†

where the coe� cient

GL ¬…R† ˆ
X

L 0¬ 0

jGL ¬;L 0¬ 0…R†j2 …27†

gives the probability that a pair of electrons ij are in the pair state of a given R. The
derivation of the CFGPs for arbitrary N and l is rather tedious. Note, however, that
the coe� cients G…R† can be expressed as (compare equation (21))

jGL ¬…R†j2 ˆ hL ¬jP̂ij…R†jL ¬i …28†
and calculated as the expectation value of the `selective interaction’ Hamiltonian ĤR,
whose only non-vanishing pseudopotential parameter is V …R† ˆ 1 (compare equa-
tion (22)) :

GL ¬…R† ˆ 2
N…N ¡ 1† hL ¬jĤRjL ¬i: …29†

From the orthonormality of functions jlN ;L ¬i it is also apparent that
X

R

X

L 0¬ 0

GL ¬;L 0¬ 0…R†GL ­ ;L 0¬ 0…R† ˆ ¯¬­ : …30†

6.2. Dynamical symmetry of hard-core repulsion
The angular momentum addition argument fails for more than three electrons,

and there are no L multiplets for N > 3 whose CFGP for R ˆ 1 ;3 ; . . . would vanish
regardless of the form of interaction pseudopotential. However, the many-electron
Hilbert space H still contains subspaces Hp holding many-body states with
grandparentage only from pair states with R 5 2p ‡ 1, for which
G…1† ˆ G…3† ˆ ¢ ¢ ¢ ˆ G…2p ¡ 1† ˆ 0:

H ² H0 ¼ H1 ¼ H2 ¼ ¢ ¢ ¢ : …31†
The total Hilbert space splits thus into subspaces ~Hp ˆ HpnHp‡1, containing many-
body states that do not have grandparentage from pair states with R < 2p ‡ 1 but
have some grandparentage from R ˆ 2p ‡ 1:

H ˆ ~H0 © ~H1 © ~H2 © ¢ ¢ ¢ : …32†
For N electrons on a Haldane sphere each with angular momentum l, there is more
than one subspace (subspace ~H1 is not empty) for 2l 5 3…N ¡ 1†, that is for ® lling
factors ¸ 4 1

3. In general, ~Hp is not empty (some states with R 5 2p ‡ 1 can be
constructed) for ¸ 4 …2p ‡ 1†¡1.

The subspaces ~Hp are the eigensubspaces of the hard-core repulsive potential
V HC de® ned in equation (17), whose low-energy states have to avoid grandparentage
from pair states with large repulsion (small R). Consequently, as for three electrons,
the energy levels in the many electron spectrum with hard-core interaction form
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bands corresponding to subspaces ~Hp. For given N and l, that is for a given ® lling
factor ¸ such that …2p ‡ 3†¡1

< ¸ 4 …2p ‡ 1†¡1, there are p ‡ 1 bands, and the qth
band (q ˆ 0 ;1 ; . . . ;p) corresponds to ~Hq. The pth band is the lowest-energy band
with the maximum number of CFGPs vanishing, and the zeroth band is the highest-
energy band containing states with some grandparentage from the R ˆ 1 pair state.
The energy gap between the qth band and the …q ‡ 1†th band is of the order of
V …2q ‡ 1† ¡ V …2q ‡ 3†. Hence, the largest gap is that between the zeroth band
and the ® rst band, the next largest is that between the ® rst band and second band,
etc.

Importantly, the set of angular momentum multiplets which make the qth band
( ~Hq subspace) of the spectrum of N electrons each with angular momentum l is
always the same as the set of multiplets in the …q ‡ 1†th band ( ~Hq‡1 subspace) of
N electrons each with angular momentum l ‡ …N ¡ 1†. This is demonstrated in ® gure
7 for four electrons in the lowest LL interacting through the (hard-core-like)
Coulomb pseudopotential. When l ˆ S is increased by N ¡ 1, the only signi® cant
di� erence in the spectrum is the appearance of an additional band at high energy.
The structure of the low-energy part of the spectrum is completely unchanged. All
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Figure 7. The energy spectra of four electrons in the lowest Landau level at di� erent mono-
pole strengths of (a) 2S ˆ 5; (b) 2S ˆ 11; (c) 2S ˆ 17 ; and (d) 2S ˆ 23 (all those 2S
values are equivalent in the mean-® eld CF picture (CS transformation with p ˆ 0, 1, 2
and 3 respectively)) : (^) states with R 5 7, that is G…1† º G…3† º G…5† º 0 and
G…7† > 0; (*), R 5 5, that is G…1† º G…3† º 0 and G…5† > 0; (*), R 5 3, that is
G…1† º 0 and G…3† > 0; (&), R 5 1, that is G…1† > 0.



bands and multiplets in the spectrum for 2S correspond directly to appropriate
bands and multiplets in the spectrum for the monopole strength 2S ‡ 2…N ¡ 1†.
For example, all three allowed multiplets at 2S ˆ 5 (L ˆ 0, 2, and 4) form the
low-energy band at 2S ˆ 11, 17 and 23, where they span the ~H1, ~H2 and ~H3 sub-
spaces respectively. Similarly, the ® rst excited band at 2S ˆ 11 (open squares in
® gure 7 (b)) is repeated in the spectra for 2S ˆ 17 and 23, where it corresponds to
~H1 and ~H2 subspaces, respectively.

Let us repeat that the fact that identical multiplets occur in subspace ~Hq for the
single-electron angular momentum l, and in subspace ~Hq‡1 for l replaced by
l ‡ …N ¡ 1†, does not depend on the form of interaction and follows solely from
the rules of addition of angular momenta of identical fermions. However, if the
interaction pseudopotential has the hard-core properties as in equation (17) , then
the many-body interaction Hamiltonian has a new dynamical symmetry, as a result
of which the following hold.

(i) The subspaces ~Hq are the eigensubspaces and the subspace (band) index q is
a good quantum number.

(ii) The energy bands corresponding to ~Hq with higher q lie below those of
lower q.

(iii) The spacing between neighbouring bands is governed by a difference
between appropriate pseudopotential coef ® cients.

(iv) The wavefunctions and the relative position of energy levels within each
(qth) band do not depend on the details of interaction (it will be shown later
that they repeat the spectrum of G…2q ‡ 1†; see ® gure 15).

Replacing the model hard-core pseudopotential by a `sof ter’ pseudopotential (the
measure of the `hard core’ character ­ will be speci® ed in } 7.5 leads to, ® rstly,
coupling between subspaces ~Hq, secondly, mixing, overlap or even order reversal
of bands and, thirdly, deviation of wavefunctions and the structure of energy levels
within bands from those of the hard-core repulsion (and thus their dependence on
details of the interaction pseudopotential).

The reoccurrence of L multiplets forming the low-energy band when l is replaced
by l § …N ¡ 1† has the following crucial implication. The lowest-energy pth band
contains L multiplets which are all the allowed multiplets of N electrons each with
angular momentum l ¡ p…N ¡ 1†. This is because, if …2p ‡ 3†¡1

< ¸N;l 4 …2p ‡ 1†¡1,
then 1

3 < ¸N;l¡p…N¡1† 4 1 and there is only one (zeroth) band in the spectrum. As for
three electrons, for the lowest LL with l ˆ S this means that the lowest-energy band
at the monopole strength 2S contains a subset of low-energy multiplets which are all
the allowed multiplets at a smaller monopole strength 2S ¡ 2p…N ¡ 1†, but
2S ¡ 2p…N ¡ 1† is just 2S*, the e� ective monopole strength of CFs! The mean-
® eld CS transformation which attaches 2p ¯ uxes (vortices) to each electron selects
the same L multiplets from the entire spectrum as does the introduction of a hard
core, which forbids a pair of electrons to be in a state with R < 2p ‡ 1.

The success of the mean-® eld CF picture in the prediction of the low-lying band
of states in the many-electron spectrum relies on the fact that the Coulomb interac-
tion within the lowest LL acts like the hard-core repulsion. For ® lling factors ¸ such
that …2p ‡ 3†¡1 < ¸ 4 …2p ‡ 1†¡1, the states predicted by the mean-® eld CF picture
as the states of an appropriate number of QHs in the Laughlin ¸ ˆ …2p ‡ 1†¡1

ground state are the states which for the hard-core interaction have the maximum
number p of vanishing CFGPs associated with the highest pseudopotential para-
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meters. These are the states with R 5 2p ‡ 1 spanning the subspace ~Hp. In particu-
lar, there is always only one state with R 5 2p ‡ 1 ( ~Hp is one dimensional) at the
® lling factor ¸ ˆ …2p ‡ 1†¡1. This state has L ˆ 0 and it is the Laughlin incompres-
sible ground state, separated from other states by the gap D which is of the order of
D ˆ V …2p ¡ 1† ¡ V …2p ‡ 1†.

As long as the eigenstates of the Coulomb interaction are approximately those of
the hard-core repulsive interaction, the incompressible ground states are associated
with the appearance of states with signi® cantly lower CFGPs than all other states in
the spectrum. The Laughlin ¸ ˆ …2p ‡ 1†¡1 ground states are the only states with
G…1† º G…3† º ¢ ¢ ¢ º G…2p ¡ 1† º 0 in their Hilbert spaces (the CFGPs do not vanish
identically because of the weak mixing between ~Hq subspaces). All other states have
some (signi® cant) grandparentage from pair states with R < 2p ‡ 1. The Jain states
at ® lling factors ¸ in the range …2p ‡ 3†¡1

< ¸ < …2p ‡ 1†¡1 are those of all states
with G…1† º G…3† º ¢ ¢ ¢ º G…2p ¡ 1† º 0, for which G…2p ‡ 1†, the ® rst non-vanishing
CFGP, is signi® cantly smaller than for other states (WoÂ js and Quinn 1999a).

What is the condition for the interaction pseudopotential to behave like the hard-
core repulsion and have the energy spectrum characteristic of the FQH e� ect? In the
following sections we answer this question and explain why the hard-core type
(FQH) ground states occur for the Coulomb interaction within the lowest LL. We
also show that, owing to a di� erent form of the Coulomb pseudopotential in higher
(spin-polarized) LLs, the FQH ground states for n > 0 occur only at lower densities,
when, at low energy, only the hard-core-like part of the pseudopotential (at high R)
contributes to the Hamiltonian given by equation (13).

6.3. Coulomb interaction in the lowest and excited L andau levels
Figure 8 shows the Coulomb energy as a function of L for the system of four

electrons each with l ˆ 15
2 . Figure 8 (a) corresponds to the lowest LL (n ˆ 0) and

® gures 8 (b) and (c) to the two excited LLs (n ˆ 1 and 2) ; the insets show the spectra
for l ˆ 9

2. Figure 8 is very similar to ® gure 6 and demonstrates that the conclusions
drawn for the simple three-electron system remain valid for an arbitrary N.

As for three electrons, the Coulomb interaction within the lowest LL (n ˆ 0)
behaves like the hard-core interaction and the energy spectrum splits into bands of
states with R 5 5 (open circles), R 5 3 (full circles) and R 5 1 (open squares). The
R 5 5 band contains only the Laughlin ¸ ˆ 1

5 ground state. For N > 3, none of
CFPs vanishes identically for an arbitrary interaction, but the CFPs that would
vanish for the eigenstates of the hard-core interaction de® ned in equation (17) indeed
vanish or are very small (G < 0:01) for the eigenstates of the Coulomb interaction.
The inset in ® gure 8 (a) shows the spectrum for l ˆ 9

2, with the Laughlin ¸ ˆ 1
3 ground

state. The energy spectrum for l ˆ 9
2 repeats main features of the two lowest-energy

bands for l ˆ 15
2 .

Within the ® rst excited LL (n ˆ 1), only the lowest band with R 5 5 can be
distinguished. The two higher bands (R 5 3 and R 5 1) overlap. Also, some of
the coe� cients G…1†, which would be zero for the hard-core repulsion, are quite
large (> 0:1) for n ˆ 1. In the inset, the two L ˆ 0 states have G…1† ˆ 0:08 and
0.26, and the Laughlin-like ¸ ˆ 1

3 state with a smaller G…1† (full circle) is the state
with a higher energy. Even though the ground state has L ˆ 0, it is not the state with
the Laughlin-like correlations, with electrons avoiding pair states with the largest
repulsion (i.e. smallest average separation ; see equation (15)). The gap above this
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ground state is not associated with the energy V …1† ¡ V …3†, and hence the ¸ ˆ 2 ‡ 1
3

state is unlikely to be an incompressible ground state in the thermodynamic limit.
For n ˆ 2, neither the Laughlin-like ¸ ˆ 1

5 state in ® gure 8 (c) (R 5 5, open
circle), nor the Laughlin-like ¸ ˆ 1

3 state in the inset (R 5 3, full circle) is the ground
state. This suggests that neither the ¸ ˆ 4 ‡ 1

3 state nor the ¸ ˆ 4 ‡ 1
5 state is an

incompressible ground state in the thermodynamic limit.
We have calculated the energy spectra analogous to those in ® gure 8 for di� erent

numbers of electrons and conclude that the Laughlin-like L ˆ 0 state with ¸ ˆ 1
3,

which is the only state with R 5 3 in its spectrum, is the ground state only within the
lowest LL (n ˆ 0). Similarly, the Laughlin-like ¸ ˆ 1

5 state with R 5 5 is the ground
state only for n 4 1.

The angular momentum L of the ground state of N electrons at the monopole
strength 2S corresponding to the ¸ ˆ 1

3 ® lling within the LL of n > 0 or to the ¸ ˆ 1
5

® lling within the LL of n > 1 depends on N. Even though L ˆ 0 (ground state is non-
degenerate) for some values of N, the low-lying spectra do not resemble those in the
lowest LL, and the excitation is not associated with energy V …1† ¡ V …3†. In order to
verify whether the L ˆ 0 ground states with ¸ ˆ 2 ‡ 1

3, 2 ‡ 1
5, 4 ‡ 1

3, and 4 ‡ 1
5 are
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Figure 8. The Coulomb energy of four electrons each with l ˆ 15
2 in (a) the lowest, (b) the ® rst

excited and (c) the second excited LLs: (*) states with R 5 5, that is G…1† º G…3† º 0
and G…5† > 0; (*), R 5 3, that is G…1† º 0 and G…3† > 0; and (&), R 5 1, that is
G…1† > 0. The ground states for n ˆ 0 and 1 are the Laughlin ¸ ˆ 1

5 states within
these LLs. The insets show the spectra for l ˆ 9

2 ; the ground state for n ˆ 0 is the
Laughlin ¸ ˆ 1

3 state.



incompressible ground states in the thermodynamic limit, we have calculated the
energy gaps above these states for di� erent values of N. The energy spectra of up to
11 electrons at the ® lling factor ¸ ˆ 1

3 in the lowest and ® rst excited LLs are presented
in ® gure 9. The energy scales for n ˆ 0 and 1 are di� erent, and the bar in the bottom
right corner of each n ˆ 1 graph on the right shows the energy gap of the corre-
sponding system in the lowest LL on the left. Figure 10 shows the dependence of the
gap DL ˆ0 from the lowest L ˆ 0 state to the lowest state of L > 0, as a function of
N¡1. For ® lling factors ¸ ˆ 2n ‡ 1

3 (full circles), N varies between four and 11 and,
for ¸ ˆ 2n ‡ 1

5 (open circles), N goes up to eight. Negative DL ˆ0 means that the
ground state is degenerate (has L > 0). In this case, jDL ˆ0j gives the excitation energy
from this degenerate ground state to the lowest state at L ˆ 0.

For n ˆ 0, the ground states at both ¸ ˆ 1
3 and 1

5 are Laughlin incompressible
states. The gap D persists for N ! 1, and the estimates obtained from the best
linear ® ts (broken lines) are D¸ˆ1=3 ˆ 0:0632 e2=¶ and D¸ˆ1=5 ˆ 0:0105 e2=¶. For
n ˆ 1, the L ˆ 0 state at ¸ ˆ 2 ‡ 1

5 is the Laughlin-like state and the gap above it
seems to converge to a ® nite value ; the linear ® t gives D¸ˆ2‡1=5 ˆ 0:0116 e2=¶, very
close to D¸ˆ1=5. On the other hand, the dependence of the gap D above the (non-
Laughlin-like) states at ¸ ˆ 2 ‡ 1

3, 4 ‡ 1
3, and 4 ‡ 1

5 on the electron number N is quite
di� erent from that for Laughlin states. No conclusive statement about the incom-
pressibility (or even the sign of D, that is the non-degeneracy) of these states in the
thermodynamic limit can be made on the basis of our ® nite-size calculations for up
to 11 electrons. Since at least at ¸ ˆ 2 ‡ 1

3 the FQH plateau has been observed
experimentally (Willet et al. 1987), we have to restrict ourselves to repeating the
statement (MacDonald and Girvin 1986) that the nature of the low-lying states at
¸ ˆ 2 ‡ 1

3, 4 ‡ 1
3, and 4 ‡ 1

5 is di� erent from that of the Laughlin ¸ ˆ 1
3 and 1

5 states. In
general, low-lying states in the lowest and nth LLs have Lauglin-like correlations
only below the ® lling factor ¸ ˆ …2n ‡ 1†¡1. At ® llings ¸ 5 …2n ‡ 1†¡1 in the nth LL,
the correlations are di� erent, possible incompressibility has a di� erent origin, the
excitation gap is not simply related to the di� erence between appropriate pseudo-
potential parameters, and the excitations do not contain Laughlin QPs.

A clear signature of the non-Laughlin-like character of the n ˆ 1
3 state in excited

LLs is the lack of QP-type excitations at neighbouring ® lling factors. In ® gure 11 we
compare the energy spectra of ten electrons at equal ® llings (near ¸ ˆ 1

3) of the lowest
and ® rst excited LLs. In the lowest LL, lowest-energy states (indicated by solid lines)
contain two QEs (® gure 2 (a)), one QE (® gure 2 (c)), one QH (® gure 2 (e)) and two
QHs (® gure 2 (g)) in the Laughlin ¸ ˆ 1

3 state, while in the ® rst excited LL no similar
low-lying states occur (note also that the energy axes for n ˆ 1 are stretched by a
factor of two compared with those for n ˆ 0). Note also that the energies connected
with the solid lines in ® gures 11 (a) and (g) de® ne the pseudopotentials of a pair of
appropriate interacting QPs in the Laughlin ¸ ˆ 1

3 state.
For a complete report of our numerical results for the lowest LL, let us add a few

values to the tables published earlier (Fano et al. 1986). In table 5 we list the
Laughlin ground-state energy per particle (calculated including the interaction
with a charge-compensating background, ¡N2e2=2R), the angular momentum and
excitation energy of the magnetoroton minimum, and the `proper’ QE and QH
energies (calculated including additional fractional charge §e=m in the background
(Haldane and Rezayi 1985a, Fano et al. 1986)), for N ˆ 10 and 11 electrons at ® lling
factor ¸ ˆ 1

3 and for N ˆ 7 and 8 electrons at ¸ ˆ 1
5. The limiting values for N ! 1

have been calculated using data for these and smaller values of N. For example, the
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Figure 9. The energy spectra of (a), (b) eight, (c), (d) nine, (e), ( f ) ten and (g), (h) 11 electrons
in (a), (c), (e), (g) the lowest and (b), (d), ( f ), (h) the ® rst excited LLs at the ® lling factor
¸ ˆ 1

3.



QE and QH energies agree very well with extrapolation of the Monte Carlo results in
disc geometry: "QE ˆ 0:073 and "QH ˆ 0:0268 (Morf and Halperin 1986).

It is known (Haldane and Rezayi 1985a) that the QE± QH excitonic energy dis-
persion (QE± QH pseudopotential) in a Laughlin state, calculated for a ® nite N-
electron system and plotted as a function of the wave-vector k ˆ L =R, quickly con-
verges to the continuous curve of an in® nite 2DEG, with a magnetoroton minimum
at k of the order of the inverse magnetic length ¶¡1. In ® gure 12 we present the QE±
QH dispersion for the ¸ ˆ 1

3 state, including data for up to 11 electrons. The con-
tinuum indicated by the grey rectangle starts at the lowest excitation energy of 11
electrons above the magnetoroton curve. The "QE ‡ "QH ˆ 0:099 492 energy (our
thermodynamic limit estimate) gives the energy of a QE± QP pair at an in® nite
distance (in® nite k). The smooth solid curve connects the data points for N ˆ 11.

6.4. Grandparentage coe� cients of low-lying states
Typical dependences of GL ¬ on R for low-lying states are plotted in ® gure 13 for

a six-electron system at l ˆ 11
2 (¸ ˆ 2

5) and l ˆ 15
2 (¸ ˆ 1

3), in the lowest and ® rst two
excited LLs. The thicker lines and full circles indicate data corresponding to the state
at L ˆ 0. The CFGP pro® le G…R† can be regarded as a pair correlation function,
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Figure 10. The energy gap DL ˆ0 from the lowest L ˆ 0 state to the lowest state at L > 0 as a
function of the inverse electron number N¡1, for (a) the lowest, (b) the ® rst excited and
(c) the second excited LLs : (*); ¸ ˆ 2n ‡ 1

3 ; (*), ¸ ˆ 2n ‡ 1
5. (- - - -), linear ® ts for the

Laughlin-like incompressible ground states at ¸ ˆ 1
3, ¸ ˆ 1

5, and ¸ ˆ 2 ‡ 1
5. The ground

states at ¸ ˆ 2 ‡ 1
3, 4 ‡ 1

3 and 4 ‡ 1
5 are unlikely to be incompressible for N ! 1.
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Figure 11. The energy spectra of ten electrons in (a), (c), (e), (g) the lowest and (b), (d), ( f ),
(h) ® rst excited LLs at ® lling factors near ¸ ˆ 1

3.



except that the probability G is given as a function of a pair quantum number R
rather than of a pair distance.

In ® gure 13 (a), the L ˆ 0 state is the Jain ¸ ˆ 2
5 ground state and the states with

L ˆ 2, 3 and 4 contain a single QE± QH pair. Similarly, in ® gure 13 (b), the L ˆ 0
state is the Laughlin ¸ ˆ 1

3 ground state and the states of a single QE± QH pair have
L ˆ 2, 3, 4, 5 and 6. Typically for the low-energy states in the lowest LL (or for any
other short-range interaction pseudopotential) at ¸ 5 1

3, G…1† is small and G…3† is
large and, for higher R, G decreases when R increases up to the maximum allowed
value. The Jain incompressible ground states always have G…1† smaller than all other
states (by at least 0.035 for N ˆ 6 and ¸ ˆ 2

5). For Laughlin states, G…1† is always
negligible (less than 0.0008 for N ˆ 6 and ¸ ˆ 1

3). The strong maximum of G…R† at
R ˆ 3 means that a large number of pairs are in the `̧ ˆ 1

3’ pair state, on a plane
given by the Laughlin correlation factor …z1 ¡ z2†3.

In higher LLs, the GL ¬…R† pro® les in ® gures 13 (c)± ( f ) di� er from those in the
lowest LL, but they are rather similar for di� erent ® llings (¸ ˆ 2

5 and 1
3). Clearly, at

any ® lling or n, the low-lying states must maximally avoid parentage from pair states
of highest repulsion. However, because the pseudopotential V …R† in higher LLs does
not increase su� ciently quickly with decreasing R in its entire range, it appears
energetically favourable to minimize total parentage from a number of pair states
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Table 5. The ground energy per particle E=N of the Laughlin ground state, the angular
momentum L and excitation energy D of the magnetoroton minimum, the proper QE
energy, °QE and the proper QH energy °QH for N electrons at a ® lling factor ¸.

¸ N E=N L D °QE °QH

1
3 10 ¡0.432 841 5 0.074 715 0.085 675 0.030 501

11 ¡0.430 623 5 0.075 706 0.084 658 0.030 092
1 ¡0.415 948 Ð 0.063 177 0.073 724 0.025 813

1
5 7 ¡0.353 494 4 0.016 245 0.020 188 0.009 068

8 ¡0.350 066 5 0.015 572 0.019 278 0.008 510
1 ¡0.332 850 Ð 0.010 516 0.014 912 0.006 288

Figure 12. The excitation energy E ¡ EGS as a function of the wave-vector k for the low-
lying excitations of the Laughlin ¸ ˆ 1

3 ground state of six to 11 electrons.



with lowest R, rather from a single highest-energy state with R ˆ 1. It appears that
requirement of having small total parentage from a number of pair states of smallest
R (smallest separation) rather than from a single pair state at R ˆ 1 for a density at
which only one pair state can be completely avoided implies having large parentage
from the R ˆ 1 state. As a result, the maximum of G…R† shifts from R ˆ 3 (for
n ˆ 0) to R ˆ 5 (for n ˆ 1) or R ˆ 7 (for n ˆ 2). Similarly, the minimum at R ˆ 1
(for n ˆ 0) shifts to R ˆ 3 (for n ˆ 1) or R ˆ 5 (for n ˆ 2). The occurrence of a large
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Figure 13. The grandparentage coe� cients GL ¬…R† as a function of relative pair angular
momentum R for the lowest-energy multiplets of six electrons each with (a), (c), (e)
l ˆ 11

2 and (b), (d), ( f ) l ˆ 15
2 , calculated for (a), (b) the lowest (c), (d) the ® rst excited

and (e), ( f ) the second excited LLs.



number of pairs in certain pair states of small R (at certain small average distance)
and avoiding others de® nes a di� erent type of short-range correlation in the ¸ ˆ 2

5 or
¸ ˆ 1

3 states in higher LLs. The natural interpretation of the maximum at R ˆ 1 for
n > 0 instead of the strong minimum as for n ˆ 0 seems to be the formation of
electron pairs (Haldane and Rezayi 1988, Moore and Read 1991). Since the elec-
tron± electron interaction is repulsive, the formation of such pairs is a many body
phenomenon and the stability of a pair requires the presence of a surrounding
electron gas at an appropriate density. For a given pseudopotential, the pairs
could be formed if putting two electrons in a pair state with strong repulsion greatly
reduces their interaction with other electron pairs. As a result, the gain in total
interaction energy in equation (26) due to reducing the contribution from pair states
of intermediate R can exceed the cost due to creating relatively few (approximately
N=2) pairs of the smallest R.

At the values of R at which the pseudopotential V …R† decreases very quickly
with increasing R, V …R† is said to have short range. At a given ® lling factor ¸ , a
number of pair states with largest repulsion are avoided completely, and the domi-
nant contribution to the energy is the largest term in equation (26). This is the one
term at the smallest value of R, for which G…R† does not vanish. There is a strong
correlation between energy and the lowest-order non-vanishing CFGP, G…2p ‡ 1† for
…2p ‡ 3†¡1

< ¸ 4 …2p ‡ 1†¡1. The low-energy states always have signi® cantly smaller
G…2p ‡ 1† than all other states with R 5 2p ‡ 1. As an example, in ® gure 14 we plot
energies and coe� cients G…1† and G…3† for the eigenstates of six electrons in the
lowest LL at 2S ˆ 19. The band of multiplets indciated as open circles have
G…1† < 0:0043, and all other states have G…1† > 0:037. The energy gap between the
two bands in ® gure 14 (a) is the result of the CFGP gap in ® gure 14 (b). The states
with G…1† º 0 are approximate zero-energy eigenstates of the hard-core pseudopo-
tential with V …1† > 0 and all other parameters vanishing. In the mean-® eld CF
picture, these states contain four QHs in the Laughlin ¸ ˆ 1

3 state, each with angular
momentum lQH ˆ 9

2. The angular momentum dependence of energy within this band
in ® gure 14 (a) is very similar to that of G…3† in ® gure 14 (c). In particular, the L ˆ 0
ground state, which is the ¸ ˆ 2

7 Jain state in the mean-® eld CF picture, has the
lowest G…3† of all states in this band.

A closer inspection of ® gure 14 reveals a general tendency for the energy to
increase with increasing L , which does not show up in the G…2p ‡ 1† spectrum.
The G…2p ‡ 1† spectrum predicts the relative positions of energy levels with neigh-
bouring L values very well, but, on the average, the energy increases more
quickly than G…2p ‡ 1† when L is increased. This is clearly visible in ® gure
15 (a), which shows the energy of six electrons at l ˆ 11

2 (¸ ˆ 2
5) and 15

2 (¸ ˆ 1
3)

as a function of G…1†. States with di� erent angular momenta L are indicated by
di� erent symbols, and only ® ve values, L ˆ 0, 3, 8, 12, and 18, are shown for
clarity. In the lowest LL, the energy and G…1† and are quite well correlated within
each L subspace, and the relations between the two are almost identical for close
values of L (e.g. L ˆ 0 and 3). However, for very di� erent values of L (e.g.,
L ˆ 0, 8, 12 and 18), the dependence of G…1† on the energy changes considerably.
As found in ® gure 14, in a pair of states with equal values of G…1†, the state with
higher L tends to have a higher energy. Clearly, this is due to the contributions
of lower-order terms in equation (26). It will be apparent from equation (38) that
the second-highest term, G…2p ‡ 3†V …2p ‡ 3†, increases with L as, roughly,
G…2p ‡ 3† / L …L ‡ 1†.
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The similarity of the energy and G…2p ‡ 1† spectra makes it clear that a model
pseudopotential with only one non-vanishing pseudopotential parameter, V …1† > 0,
reproduces the main features of the spectrum for ¸ 5 1

3. Similarly, the spectrum of a
model pseudopotential with a hard core, V …1† ˆ 1, one ® nite parameter, V …3† > 0,
and all higher parameters vanishing resembles the low-energy band of the Coulomb
spectrum for 1

3 5 ¸ 5 1
5. In general, for the ® lling factor ¸ in the range

…2p ‡ 3†¡1
< ¸ 4 …2p ‡ 1†¡1, the ® nite energy eigenstates of the hard-core pseudo-

potential de® ned as

V …p†
HC…R < 2p ‡ 1† ˆ 1 ;

V …p†
HC…R ˆ 2p ‡ 1† ˆ 1 ;

V …p†
HC…R > 2p ‡ 1† ˆ 0 ;

…33†

are very close to those of the Coulomb pseudopotential. The dependence of ® nite
eigenenergies of V …p†

HC on angular momentum L reproduces the main features of the
lowest band of the Coulomb spectrum.
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Figure 14. (a) The energy E and grandparentage coe� cients (b) G…1† and (c) G…3† as func-
tions of the angular momentum L for the system of six electrons in the lowest LL at
2S ˆ 19 : (*), states with R 5 3, that is G…1† º 0 and G…3† > 0; (*), states with R 5 1,
that is G…1† > 0.



Because of the di� erent behaviours of the pseudopotential, the above conclusion
does not generally hold for higher LLs. The correlation between energy and G…1† for
the same ® lling factors ¸ ˆ 2

5 and 1
3 within the ® rst excited LL (n ˆ 1), plotted in

® gures 15 (c) and (d), is much worse than that for n ˆ 0 in ® gures 15 (a) and (b). In
particular, the lowest-energy L ˆ 0 state is no longer the state with the smallest G…1†
at either ® lling. Also, the Coulomb eigenstates in ® gures 15 (c) and (d) are not similar
to those of a hard-core repulsion. For example, there is no Laughlin-like state at
¸ ˆ 1

3 with R 5 3 (instead, G…1† > 0:06 for all states) and no Jain-like state at ¸ ˆ 2
5

with G…1† º 0:12 (instead, G…1† > 0:19 for all states) .
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Figure 15. The Coulomb energy of six electrons each with (a), (c), (e) l ˆ 11
2 and (b), (d), ( f )

l ˆ 15
2 as a function of the grandparentage coe� cient G…1†, calculated for (a), (b) the

lowest, (c), (d) the ® rst excited and (e), ( f ) the second excited LLs: (*), L ˆ 0; (*),
L ˆ 3; (^), L ˆ 8; (&), L ˆ 12; (&), L ˆ 18. Only selected values of L are shown.



As shown in ® gures 15 (e) and ( f ), the correlation between energy and G…1†
reappears in the second excited LL (Haldane and Rezayi 1985a). However, it is
reversed and the low-energy states have high values of G…1†. At ¸ ˆ 2

5, the Jain-like
state with G…1† º 0:12, maximally avoiding pair states with the smallest average
separation and largest repulsion, is the highest-energy state in its L ˆ 0 subspace.
Similarly, the highest L ˆ 0 state at ¸ ˆ 1

3 is the Laughlin-like state with G…1† º 0:02.
The approximation of the Coulomb pseudopotential by the hard-core pseudo-

potential, which gives almost exact many-body eigenstates in the lowest LL and
predicts the sequence of the Laughlin incompressible ground states, becomes valid
in higher LLs at lower density (® lling factor). For n ˆ 1 and at ® llings ¸ 4 1

5, the
second-lowest band (R 5 3) couples to the next higher band (R 5 1). Interband
coupling means here that the actual eigenstates are linear combinations of hard-
core eigenstates from both bands and the eigenstates originating from the R 5 3
band of the hard-core spectrum have some grandparentage from the R ˆ 1 pair
state. However, as seen in ® gure 8 for only one (ground) state, the band originating
from the R 5 5 band is (to a good approximation) uncoupled, that is its eigenstates
indeed all have R 5 5 and are very close to the corresponding hard-core states. This
occurs because the decoupling of the lowest band from the rest of the spectrum
depends on the behaviour of the pseudopotential V at R 5 3, where V for n ˆ 1
is similar to that for n ˆ 0 (see ® gure 5). Figure 16 shows the energy spectra of six
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Figure 16. The energy spectra of six electrons each with angular momentum (a), (b) l ˆ 15
2

and (c), (d) l ˆ 25
2 , in (a), (c) the lowest and (b), (d) the ® rst excited LLs: (*) states

maximally avoiding pairs with largest repulsion; (- - - -), states with one QE± QH pair.



electrons each with l ˆ 15
2 (® lling factor ¸ ˆ 1

3) and l ˆ 25
2 (¸ ˆ 1

5), for the lowest and
® rst excited LL. Figure 17 shows the corresponding spectra of G…1† and G…3†. States
indicated by open circles are states with the lowest G…1† for l ˆ 15

2 in ® gures 16 (a) and
(b) and ® gures 17 (a) and (b) and states with G…1† º 0 and the lowest G…3† for l ˆ 25

2 in
® gures 16 (c) and (d) and ® gures 17 (c) and (d). Broken lines connect the states that
contain a single QP pair in the mean-® eld CF picture. Clearly, even though the
ground states in ® gures 16 (a) and (b) and ® gures 17 (a) and (b) both have L ˆ 0,
the two spectra for l ˆ 15

2 are di� erent. For n ˆ 1, the band of states with one QP pair
is absent, the ground state is not the state with lowest G…1†, and none of the states has
G…1† º 0. On the other hand, the two spectra at l ˆ 25

2 in ® gures 16 (c) and (d) and
® gures 17 (c) and (d) are very similar. Both contain the band of states with one QP
pair, and have the Laughlin ¸ ˆ 1

5 ground states with G…1† º G…3† º 0.

} 7. RELATION BETWEEN THE PSEUDOPOTENTIAL AND THE OCCURRENCE OF

INCOMPRESSIBLE GROUND STATES

7.1. Total angular momentum versus average pair angular momentum
A very useful operator identity

X

i<j

L̂ 2
ij ˆ L̂ 2 ‡ N…N ¡ 2† l̂ 2 …34†
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Figure 17. The grandparentage coe� cients G…1† and G…3† for the eigenstates of six electrons
each with angular momentum (a), (b) l ˆ 15

2 and (c), (d) l ˆ 25
2 , in (a), (c) the lowest and

(b), (d) the ® rst excited LLs: (*), states maximally avoiding pairs with largest repul-
sion; (- - - -), states with one QE± QH pair.



is straightforward to prove (WoÂ js and Quinn 1999a). Here L̂ ˆ P
i l̂i and L̂ ij ˆ l̂i ‡ l̂j .

Taking the expectation value of equation (34) in the state jlN ;L ¬i gives

X

i<j

L̂ 2
ij

* +
ˆ L …L ‡ 1†‡ N…N ¡ 2† l…l ‡ 1†; …35†

which is independent of which multiplet ¬ of a given angular momentum L is being
considered. From equation (24) we also have

X

i<j

L̂ 2
ij

* +
ˆ N…N ¡ 1†

2

X

L 12

GL ¬…L 12†L 12…L 12 ‡ 1†: …36†

Combining the above two equations, a non-trivial condition on the allowed values of
CFGPs is obtained. Adding the normalization condition following from equation
(30), we have the following pair of constraints on the allowed CFGPs pro® les
GL ¬…R† in a multiplet of a given L :

X

L 12

GL ¬…L 12†L 12…L 12 ‡ 1† ˆ L …L ‡ 1†‡ N…N ¡ 2†l…l ‡ 1†
N…N ¡ 1†=2

; …37†
X

L 12

GL ¬…L 12† ˆ 1: …38†

The minimization of the total interaction energy in a Hilbert space of a given N, l, M
and L occurs through the optimization of the CFGP pro® le G…R† (i.e. the pair
correlation function) and must conform to the above constraints.

7.2. Harmonic repulsive interaction
It follows from equations (26), (35) and (36) that, if the pseudopotential were

given by

V H…L 12† ˆ c1 ‡ c2 L 12…L 12 ‡ 1†; …39†
all di� erent multiplets with the same value of total angular momentum L would be
degenerate at the energy

EL ¬ ˆ c1N…N ¡ 1†=2 ‡ c2‰L …L ‡ 1†‡ N…N ¡ 2†l…l ‡ 1†Š: …40†
What is the physical meaning of the pseudopotential V H that is linear in L̂ 2

12? From
equation (15), V H is the harmonic interaction :

V H…jri ¡ rjj† ˆ c 0
1 ¡ c 0

2

jri ¡ rjj
2

R2 ; …41†

Using equation (34), the many-body harmonic interaction Hamiltonian can be
written as

HH ˆ c1N…N ¡ 1†
2

‡ c2 N…N ¡ 2†l…l ‡ 1†‡ B L̂ 2 ; …42†

that is, for the harmonic repulsive interaction within an isolated LL, each L subspace
is degenerate and the energy increases linearly with increasing L …L ‡ 1†.

The di� erence between the harmonic and actual pseudopotentials, the `anhar-
monic’ contribution V AH ˆ V ¡ V H, lifts this degeneracy and the actual values of
EL ¬ depend on how the values of GL ¬…L 12† are distributed and not just on the
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average value of L̂ 2
12 for that value of L . However, if the anharmonic correction V AH

is small, the ground state will have the lowest available value of angular momentum,
L ˆ L min. If V AH is not small, di� erent multiplets with the same L repel one another,
and the splittings caused by V AH can become large when NL , the number of times
that the multiplet L occurs, is large. As a result, the lowest multiplet with certain
angular momentum L can have lower energy than multiplets of a smaller neighbour-
ing L 0, for which NL 0 ½ NL . In this case, a state with L larger than L min can become
the ground state. For example, for the system of eight electrons at 2S ˆ 22, the
lowest-energy multiplet at L ˆ 4 has lower energy than the multiplets at L ˆ 0, 1,
2 and 3 (see ® gure 1 (b) and table 6 in } 7.3). Even if V AH is not small, if only V …L 12†
increases with increasing L 12 , then states with low angular momentum L (and thus
low average pair angular momentum L 12 ) will tend to have low energy, and states
with high L will tend to have high energy.

How close is the actual Coulomb pseudopotential to the harmonic pseudo-
potential? The plots of V given as a function of squared pair angular momentum
L …L ‡ 1† are shown in ® gure 18. The pseudopotentials for n ˆ 0 increase more
quickly than linearly with increasing L …L ‡ 1† in the entire range of L . For n ˆ 1,
they do so at low values of L , and the dependence is almost linear close to R ˆ 1.
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Figure 18. The pseudopotentials of the Coulomb interaction in (a) the lowest, (b) the ® rst
excited and (c) the second excited LLs as functions of squared pair angular momen-
tum: (&) l ˆ 5; (!), l ˆ 15

2 ; (^) l ˆ 10; (*), l ˆ 25
2 ; (- - - -), pseudopotentials corre-

sponding to the the best harmonic interaction ® t of the six-electron spectrum, as
shown by the broken lines in ® gure 19 for l ˆ 5.



For n ˆ 2, V becomes a sublinear function of L …L ‡ 1† at high energy. The broken
lines give the pseudopotentials of a harmonic interaction which correspond to the
best ® t to the six-electron spectra.

Examples of energy spectra of the six electron system in the lowest (n ˆ 0) and
two excited (n ˆ 1 and 2) LLs approximated by the harmonic interaction are shown
in ® gure 19 for l ˆ 5. The general trend for the energy to increase with L as well as
the e� ects due to level repulsion caused by the anharmonicity of the pseudo-
potentials are visible. In ® gure 19, the highest-energy state is the state with the
highest L , and the lowest-energy states have low L . The spectrum for n ˆ 1 is less
distorted from its harmonic ® t than the spectra for n ˆ 0 and 2. This re¯ ects the fact
that the corresponding pseudopotential, indicated by full squares in ® gure 18 (b), is
closer to a harmonic pseudopotential than the other two, also indicated by full
squares in ® gures 18 (a) and (c). For n ˆ 1 and 2, the ground state has the lowest
available angular momentum L ˆ L min ˆ 1. For n ˆ 0, the anharmonicity of the
pseudopotential is su� ciently large for the state with L ˆ 3 > L min, to become the
ground state due to the level repulsion (N3 ˆ 4 is larger than N1 ˆ 2 or N2 ˆ 1). The
open circles in ® gure 19 indicate the two states at L ˆ 1 and 3, which have the lowest
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Figure 19. The energy spectra of six electrons, each with l ˆ 5, in (a) the lowest, (b) the ® rst
excited and (c) the second excited LLs: (*), Coulomb spectra, (- - - -), best harmonic
interaction ® ts to the Coulomb spectra (corresponding harmonic interaction pseudo-
potentials are given in ® gure 18) ; (*) states maximally avoiding pair states with largest
repulsion.



G…1† of all states in the spectrum. For n ˆ 0 these states are predicted by the mean-
® eld CF picture as the states of two QEs in the ¸ ˆ 2

5 state.

7.3. Comparison with the atomic system : Hund’ s rule
The problem of electrons in a high magnetic ® eld, occupying single particle states

of the nth LL (monopole harmonics with 2S > 0, shell index n ½ S and angular
momentum l ˆ S ‡ n), can be compared with that of electrons in an atomic shell,
occupying atomic states (spherical harmonics with S ˆ 0 and l ˆ n). In both cases
the problem is that of N electrons each with angular momentum l in a degenerate
shell of states with di� erent values of m . However, the pseudopotential V …R†
behaves very di� erently in the two systems. The comparison between the extreme
n ˆ 0 and S ˆ 0 cases is presented in ® gure 20. The pseudopotentials for the lowest
LL shell V nˆ0 and for the atomic shell V Sˆ0, calculated for the same l ˆ S ‡ n, look
quite similar when V Sˆ0 is plotted as a function of pair angular momentum L , and
V nˆ0 is plotted as a function of the relative pair angular momentum R ˆ 2l ¡ L .
Therefore, while V nˆ0 decreases quickly with increasing R and attains the highest
value at R ˆ 1, V Sˆ0 does just the opposite.

The pseudopotentials both in ® gure 20 (a) and in ® gure 20 (b) describe the same
Coulomb electron± electron interaction V …r† ˆ e2=r, and the origin of this di� erence
lies in the very di� erent Hilbert spaces. The density pro® les %m…cos ³† for the single-
particle states in both cases are shown in ® gure 21. ³ is the standard spherical
coordinate ; z ˆ R cos ³. The average value of z is (WoÂ js and Quinn 1998a)

hS ; l ;mjzjS ; l ;mi ˆ mS
l…l ‡ 1† R ; …43†

%¡m…z† ˆ %m…¡z† for the monopole harmonics, and %¡m…z† ˆ %m…z† for the spherical
harmonics.
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Figure 20. The pseudopotentials V of the Coulomb interaction potential V …r† ˆ e2=r for a
pair of electrons each with angular momentum l : (a) lowest Landau level, monopole
harmonics, n ˆ 0 and l ˆ S , V plotted as a function of relative pair angular momen-
tum R ; (b) atomic shell, spherical harmonics, S ˆ 0 and l ˆ n, calculated for a radial
wavefunction which localizes electrons at radius R, V plotted as a function of pair
angular momentum L .



The two-electron state jL ;Mi with the maximum pair angular momentum
L ˆ 2l ¡ 1 and M ˆ L is the single-particle con® guration jm1 ˆ l ;m2 ˆ l ¡ 1i. For
the monopole harmonics, it has a high Coulomb energy, as it corresponds to two
electrons tightly packed around the north pole of the sphere. On the other hand, the
two-electron state with the minimum pair angular momentum, L ˆ 0, can be written
as jL ˆ 0 ;M ˆ 0i ˆ P

m ±mjm1 ˆ m ;m2 ˆ ¡mi, that is in each contributing single-
particle con® guration jm1 ;m2i the two electrons have opposite m values. Opposite m
values mean opposite hzi values and large spatial separation, and therefore the pair
state with L ˆ 0 must have a low interaction energy.

For the spherical harmonics, a similar analysis gives opposite answers. The state
jm1 ˆ l ;m2 ˆ l ¡ 1i with the maximum allowed L corresponds to two electrons
spread over a large part of the sphere and avoiding one another (a high density
for m ˆ l occurs at z corresponding to a low density for m ˆ l ¡ 1, and vice versa).
Therefore this state must have a low Coulomb energy. In the state with minimum
L ˆ 0, built of single-particle con® gurations jm1 ˆ m ;m2 ˆ ¡mi, opposite m values
mean equal density pro® les %…cos ³†, and thus a small average separation and a high
interaction energy.

In the case of an atomic system, the reasoning based on equation (34) and the
pseudopotential pro® le leads to Hund’ s rule. The multiplets with larger total angular
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Figure 21. The single-particle density pro® les: (a) lowest Landau level, monopole harmonics,
n ˆ 0, l ˆ S ; (b) atomic shell, spherical harmonics, S ˆ 0, l ˆ n, calculated for a radial
wavefunction which localizes the electron at radius R.



momentum L have, on the average, larger pair angular momenta L ij and thus
lower energy. There is only one multiplet with the maximum allowed total angular
momentum L ˆ L max ˆ Nl ¡ N…N ¡ 1†=2; it is a single-particle `compact droplet’
(maximum density) con® guration, for M ˆ L equal to jm1 ;m2 ; . . . ;mNi ˆ
jl ; l ¡ 1 ; . . . ; l ¡ N ‡ 1i. It has the highest value of the average pair angular momen-
tum and hence it is very likely to be the ground state. A transition to a ground state
at a neighbouring lower L would require strong anharmonicity of the pseudopoten-
tial. Since relatively low multiplicities NL occur at L values close to L max

(NL max¡1 ˆ 0, NL max¡2 4 1, NL max¡3 4 1, etc. ), V AH does not a� ect the ordering of
the levels at high L . Despite this strong indication that the state with the largest L
has the lowest energy in atomic systems, Hund’ s rule is considered an empirical rule,
that can be rigorously justi® ed only by detailed numerical calculations. It is also
noteworthy that the atomic Hund’ s rule is usually of interest only for rather low
values of l (up to the atomic g or h shell).

By analogy, the opposite rule can be formulated for monopole harmonics (FQH
system on a Haldane sphere), stating that the state with the maximum L has the
highest energy. Since for monopole harmonics the low-energy states have low values
of angular momentum L (with large multiplicities NL ), the direct analogue of the
atomic Hund’ s rule (selecting the ground state) requires that the correction V AH is
negligible. Under this assumption it states that the state with lowest available L has
the lowest energy. Both rules have been veri® ed numerically.

For the Coulomb interaction acting in the space of monopole harmonics in the
lowest LL, the assumption that V AH is negligible does not hold and the multiplicities
NL at low L play a crucial role in determining low-energy L multiplets. In this general
case, knowing which multiplet is the ground state or which multiplets form the low-
energy sector without performing detailed numerical calculations is a considerably
more di� cult task. The prescription that the low-energy states are found among states
with low values of L which correspond to large NL can be thought of as a more
appropriate analogue to the atomic Hund’ s rule. As is the case with the atomic
Hund’ s rule, it is an empirical rule that must be veri® ed numerically.

Importantly, the L multiplets for which NL is relatively large tend to reoccur at
the same values of angular momentum L when 2S is replaced by
2S* ˆ 2S ¡ 2p…N ¡ 1†. In table 6 we present, as an example, NL as a function of
L and 2S for a system of eight electrons. The values of 2S go from zero to 22; the
values of L are shown up to eight. The L spaces which are predicted by the CF
picture to form the lowest-energy band are underlined. Clearly, they coincide with
relatively high multiplicities NL at the lower values of L . Note, for example, that the
high NL values at 2S ˆ 19, 20 and 21 appear at the same angular momenta L as the
allowed multiplets at 2S* ˆ 5, 6 and 7 respectively.

7.4. Connection between Hund’ s rule and avoiding pair states of large repulsion
What is the connection between the two predictions of low-energy states dis-

cussed earlier, namely the Hund’ s rule argument selecting multiplets at low L with
high NL and the argument selecting multiplets that avoid large fractional grand-
parentage from pair states with largest repulsion? Let us ® rst note that whether a
many-body state without grandparentage from certain pair states belongs to the
Hilbert space of given N, l, and L depends critically on NL . It follows from equations
(24) and (27) that a multiplet with G…R† ˆ 0 (e.g. for R ˆ 1) can be constructed if the
degeneracy NL exceeds NR, the number of terms …L 0 ;¬ 0† in equation (24) with L 12
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corresponding to R. For example, for L ˆ 0, the addition of angular momentum
vectors, L ˆ L12 ‡ L 0, selects only one value of L 0 equal to L 12. In this case, it is
guaranteed that NR does not exceed N 0

L 12
, the number of all L 0 ˆ L 12 multiplets of

N ¡ 2 electrons each with angular momentum l. The actual value of NR can be
smaller than N 0

L 12
because of the Pauli exclusion principle, which eliminates some

of the combinations of L 0 and L12. However, NL ˆ0 > N 0
L 12

guarantees that a multiplet
jlN ;0¬i, a linear combination of terms in equation (24), can be constructed, for
which the coe� cients G0¬;L 12¬ 0…R† vanish simultaneously for all ¬ 0 and therefore
so does the coe� cient G0¬…R†.

In general, it is di� cult to determine NR by adding dimensions of all relevant L 0

spaces of N ¡ 2 electrons because of the Pauli principle which imposes additional
constraints on CFGPs in equation (24). However, one can calculate the matrix (¬
versus L 0¬ 0) of coe� cients GL ¬;L 0¬ 0…R† for all multiplets of given L (for any choice of
basis states ¬, not necessarily the interaction eigenstates) and determine NR directly.
It is clear that NL must exceed a certain mimimum value for the occurrence of L
multiplets which avoid grandparentage from certain (strongly repulsive) pair states.
It is also clear that the minimum NL that is required to exceed N 0

L 12
increases with
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Table 6. The number NL of independent multiplets at angular momentum L for eight
electrons as a function of 2S for 0 4 2S 4 22. Only values of L up to 8 are included
in the table.

NL for following L values

2S 0 1 2 3 4 5 6 7 8

0 1
1 1 1 1
2 1
3 1 1 1
4 1 1 1 1 1
5 1 1 1 1
6 1
7 1
8 1
9 1 1 1 1

10 1 1 1 2 1 2 1 1
11 2 3 1 4 2 4 2 4
12 2 1 4 3 6 5 7 5 7
13 4 1 7 5 11 7 13 9 13
14 4 3 10 9 16 14 19 17 21
15 7 4 16 13 25 21 31 26 35
16 8 8 21 22 35 33 45 42 51
17 12 10 32 30 51 48 66 61 77
18 13 17 42 45 69 70 91 90 108
19 20 22 58 61 96 95 128 124 152
20 22 33 75 85 126 133 169 173 205
21 31 42 101 111 168 175 227 230 277
22 36 59 126 150 215 233 294 307 360



increasing L since a larger number of angular momenta L 0 satisfy the addition rule,
jL 0 ¡ L 12j 4 L 4 L 0 ‡ L 12 , for larger L . If the multiplets with R 5 3;5; . . . can be
constructed (belonging to the Hilbert space of given N, l and L ), they will be the
lowest-energy eigenstates of the hard-core interaction de® ned in equation (17).
Hence, the above discussion explains the occurrence of such eigenstates at those of
low values of L which have high multiplicity NL .

Another problem that still needs clari® cation is whether the multiplets with
R 5 3;5; . . . are the eigenstates of the actual (not strictly hard-core) interaction
pseudopotential V …R† (e.g. the Coulomb interaction in a given LL), and whether
they have low energy. In other words, what is the relevant measure of the s̀hort-
range’ character of the electron± electron interaction in the lowest LL? Or, what is the
condition for V …R† to act like hard-core repulsion and to have the energy spectrum
characteristic of the FQH e� ect, with low-energy states that have R 5 3;5; . . .?
Clearly, whether the ground state and other low-lying multiplets tend to avoid
grandparentage from pair states with R ˆ 1 ;3 ; . . . depends not only on whether
V …R† is a decreasing function of R, but also on how quickly it decreases with R.
This is because the sequence of CFGPs of a given eigenstate jL ¬i are mutually
connected through the normalization condition given by equations (37), and the
non-trivial condition (38). For example, it turns out that the ¸ ˆ 1

3 state with
G…1† º 0 always has the largest G…3† of all states. Therefore, V …R† must decrease
su� ciently quickly with increasing R for the state with R 5 3 to be the ground state
at the ¸ ˆ 1

3 ® lling.

7.5. De® nition of the short-range pseudopotential
The condition for the occurrence of the Laughlin incompressible ¸ ˆ …2p ‡ 1†¡1

ground states with G…R < 2p ‡ 1† º 0 (and, generally, for the occurrence of low-
energy states with G…R < 2p ‡ 1† º 0 and low G…2p ‡ 1† for ¸ < …2p ‡ 1†¡1 ) is
that the pseudopotential V …L † increases more quickly than linearly with increasing
L …L ‡ 1†. In ® gures 22 (c) and (d) we show the energy spectra of a system of six
electrons each with angular momentum l ˆ 15

2 , calculated for a model pseudo-
potential

V ­ …L † ˆ ‰L …L ‡ 1†Š­ ; …44†
with ­ > 1 and ­ < 1. In ® gures 22 (a) and (b) we plot the corresponding spectra of
the CFGP corresponding to the highest pseudopotential parameter G…1†. The G…1†
spectra look quite similar for ­ ˆ 1:1 and 0.9. In particular, in both cases there is one
state in the spectrum (indicated by a large open circle) whose G…1† almost vanishes.
At ® rst sight, the energy spectra also look similar. Both of them reveal overall
tendency to increase energy with increasing L , and in both of them the larger
width of L subspectra coincides with larger NL . However, a closer inspection
shows that the two spectra look like one another’ s vertical re¯ ections. For ­ > 1,
the states with low G…1† tend to have a low energy. For example, within the L ˆ 0
subspace, the state with G…1† º 0 (large open circle) (this is the Laughlin-like ¸ ˆ 1

3
state) has the lowest energy, and the state with the maximum G…1† º 0:3 (large open
square) has the highest energy. On the contrary, for ­ < 1, the states with low G…1†
tend to have a high energy. For example, for L ˆ 0, the state with minimum G…1† has
the highest energy and vice versa. Clearly, the behaviour of the energy as a function
of G…1† is opposite for ­ > 1 and ­ < 1. This can be demonstrated even more clearly
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by comparing the expectation values of the V ­ interaction in the same states (instead
of comparing the eigenspectra). In this case the ordering of energies within each L
subspace is exactly reversed.

The exponent ­ is the relevant measure of the s̀hort-range’ character of a pseu-
dopotential V ­ . The condition given by equation (17) that has been used to de® ne an
ideal short-range (hard-core) pseudopotential throughout this paper can be rewritten
as ­ ¾ 1. The pseudopotentials with ­ > 1 de® ne a class of s̀hort-range’ repulsive
interactions characterized by similar behaviours of energy spectra and wavefunc-
tions. For ­ ! 1, the wavefunctions and structure of energy spectra converge to
those of the model interaction in equation (17) ; at the ® lling factor ¸ ˆ …2p ‡ 1†¡1

the ground state is given exactly by the Laughlin wavefunction (or by its spherical
form given by Haldane (1983). The pseudopotentials V ­ with ­ < 1 belong to a
separate class of interactions, characterized by their own (common) behaviour of
energy spectra and wavefunctions (WoÂ js and Quinn 1998a), di� erent from those of
the short-range class with ­ > 1. In particular, Laughlin incompressible
¸ ˆ …2p ‡ 1†¡1 ground states with R 5 2p ‡ 1 occur only for ­ > 1. The
harmonic interaction with ­ ˆ 1 separates those two classes and does not belong
to either.
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Figure 22. (a), (b) The grandparentage coe� cients G…1† and (c), (d) the eigenenergies for a
system of six electrons each with angular momentum l ˆ 15

2 , where the interaction
pseudopotential is V ­ …L † ˆ ‰L …L ‡ 1†Š­ , with (a), (c) ­ ˆ 1:1 and (b), (d) ­ ˆ 0:9:
(*), L ˆ 0 eigenstates with minimum G…1†; (&), L ˆ 0 eigenstates with maximum
G…1†.



7.6. Pseudopotentials of other two-dimensional systems
The Coulomb pseudopotential for the lowest LL is not strictly of the form

V ­ …L †. However, as shown in ® gure 18 (a), it increases more quickly than linearly
with an increase in L …L ‡ 1† in entire range of L . In consequence, the low-energy
states are those with G…1† º G…3† º ¢ ¢ ¢ º G…2p ¡ 1† º 0 and the lowest value of
G…2p ‡ 1†, and the L ˆ 0 ground states at 2S ˆ …2p ‡ 1†…N ¡ 1† are Laughlin incom-
pressible ¸ ˆ …2p ‡ 1†¡1 states. In general, the low-lying states of an interacting
many body system at ® lling factor ¸ º …2p ‡ 1†¡1 tend to have Laughlin correlations
(the states with the lowest energy have vanishing grandparentage from pair states
with R < 2p ¡ 1 and smallest grandparentage from R ˆ 2p ¡ 1), if the pseudo-
potential V …R† decreases as a function of R in the entire range and decreases
more quickly than the harmonic pseudopotential V H in the vicinity of R ˆ 2p ‡ 1.
On a sphere, V H increases linearly as a function of the squared pair angular momen-
tum L …L ‡ 1†; on a plane it decreases linearly as a function of the angular momen-
tum of the relative motion. The condition for Laughlin correlations can be
conveniently expressed in terms of the anharmonicity parameter

¹…R† ˆ V …R† ¡ V H…R†; …45†
where V H…R† is the harmonic extrapolation of V …R ‡ 4† and V …R ‡ 2† at R. The
condition states that Laughlin correlations (avoiding pairs with R 4 2p ¡ 1) occur at
¸ º …2p ‡ 1†¡1 if ¹…2p ¡ 1† > 0. In ® gure 23 we plot ¹…R† for a number of di� erent
two-dimensional electron systems in a high magnetic ® eld. By analogy to the electron
gas in the lowest LL, one could expect Laughlin-like correlations in these systems,
and try to interpret them in terms of mean-® eld CFs.

As shown in ® gure 23 (a) and in ® gures 18 (b) and (c), the electron pseudopoten-
tial in excited LLs is of the short range type only for R 5 2n ‡ 1. In consequence, the
ground states at Laughlin± Jain ® lling factors ¸ 5 …2n ‡ 1†¡1 do not have Laughlin
correlations (in contrast with the states at the same ® lling of the lowest LL). Only at
lower ® lling factors, ¸ < …2n ‡ 1†¡1, where the part of the pseudopotential which
does not decrease quickly enough with increasing R is completely avoided and does
not a� ect the lowest-energy eigenstates, do these eigenstates have low grandparen-
tage from pair states with large repulsion. In particular, the Laughlin-like incom-
pressible ground states occur only at ¸ < …2n ‡ 1†¡1. This explains the
compressibility of the ¸ ˆ 2 ‡ 1

3, 4 ‡ 1
3, and 4 ‡ 1

5 ground states (or, at least, di� erent
correlations and thus di� erent origins of their incompressibility) , and the incompres-
sibility of the ¸ ˆ 2 ‡ 1

5 ground state, observed in ® gure 10.
Another example of a system interacting through the short range pseudopoten-

tial is the system of charged excitons (X¡, two electrons bound to a valence hole) or
biexcitons (X¡

2 , three electrons bound to two valence holes) in the lowest LL, which
has been shown to have Laughlin-like incompressible ground states (WoÂ js et al.
1998, 1999a). This is con® rmed in ® gure 23 (b), where we also plot ¹…R† calculated
for the interaction of an X¡ or an X¡

2 with an electron (e¡). Note that, for a pair of
distinguishable particles, R can take on any integer value and that the pseudo-
potentials involving X¡ or X¡

2 have a hard core (V ˆ 1) at a number of smallest
values of R. Clearly, the Laughlin-like e¡ ± X¡ or e¡ ± X¡

2 correlations described by a
Jastrow pre-factor in the wavefunction will only occur at odd values of R (WoÂ js et al.
1999b).

If electrons are con® ned in parallel two-dimensional layers separated by a small
distance d , the interlayer repulsion V d…r† ˆ e2=…r2 ‡ d2†1=2 can result in the interlayer
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Laughlin correlations, unless d is larger than the characteristic separation between
electrons in each layer (approximately …2p=¸¶†1=2). The plots of ¹…R† for the pseu-
dopotentials V d…R† in the lowest LL are shown in ® gure 23 (c). When d is large,
V d…r† º ‰1 ¡ 1

2 …r=d†2 ‡ ¢ ¢ ¢Š=d becomes essentially harmonic at small r, V d…R†
becomes harmonic at small R and the interlayer correlations disappear. Since
V d…r† is a good approximation to an e� ective two-dimensional potential in a
quasi-two-dimensional layer of ® nite width (about 5d ), ® gure 23 (c) shows also the
destruction of the FQH e� ect in a single wide quantum well (Shayegan et al. 1990).

The CF hierarchy uses the mean-® eld approach for the QPs and therefore should
fail when applied to partially ® lled QP shells unless the QP pseudopotential has a
short range. In states with completely ® lled QE shells (where ¸QE is an integer), the
gap for creating a new type of QE± QH pair makes the non-degenerate L ˆ 0 ground
state an incompressible ¯ uid state regardless of the form of the QE pseudopotential.
For example, the Jain incompressible ¸ ˆ 2

5 state is obtained when QEs of the ¸ ˆ 1
3

parent state ® ll one shell (¸QE ˆ 1). For partially ® lled QP shells, the CF hierarchy
correctly predicts daughter incompressible ground states only at certain fractional
QP ® lling factors but not at others. A quick look at the QP pseudopotentials in
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Figure 23. The anharmonicity parameter ¹ as a function of relative angular momentum
R for pseudopotentials of di� erent electronic systems in a high magnetic ® eld:
(a) electrons in di� erent LLs; (b) electrons and charged excitons in the lowest LL;
(c) electrons in two parallel two-dimensional layers separated by d magnetic lengths;
(d) Laughlin QPs in the ¸ ˆ 1

3 and 1
5 ground states.



® gures 11 (a) and (g) for ten electrons (as well as in ® gures 1 (c) and 2 (d) and (h) for
eight electrons) allows the prediction of ® lling factors at which the QPs indeed form a
Laughlin ground state. In ® gure 23 (d) we plot ¹…R† for QPs of Laughlin ¸ ˆ 1

3 and 1
5

states, obtained in diagonalization of 11- and eight-electron systems respectively. It
can be readily seen that Laughlin QHs should form a stable Laughlin ¸QH ˆ 1

3 state
of their own. It follows from equation (7) that the ¸QH ˆ 1

3 daughter state of the ¸ ˆ 1
3

parent state corresponds to the Jain ¸ ˆ 2
7 state of electrons. Indeed, this state is an

incompressible eight-electron ground state in ® gure 1 ( f ). On the other hand, the
¸QH ˆ 1

5 QH state and the corresponding ¸ ˆ 4
13 electron state will be compressible.

Indeed, the eight-electron ground state in ® gure 1 (d) does not even have L ˆ 0. The
¸QH ˆ 1

7 state might be incompressible but with a much smaller gap than that of
the ¸QH ˆ 1

3, state, which would lead to weak incompressibility of the ¸ ˆ 6
19 electron

state. Indeed, the gap above the L ˆ 0 ground state of six electrons at 2S ˆ 17 is very
small. For partially ® lled QE shells, the ¸QE ˆ 1

3 (¸ ˆ 4
11) and ¸QE ˆ 1

7 (¸ ˆ 8
23) states

are expected to be compressible, and the ¸QE ˆ 1
5 (¸ ˆ 6

17) state could be weakly
incompressible. These predictions are in perfect agreement with numerical results
for ® nite systems (WoÂ js and Quinn 2000), and we presume that taking into account
the behaviour of pseudopotentials of interaction between QEs and between QHs in
di� erent stable Laughlin states on all levels of hierarchy explains naturally all the
observed odd denominator FQH ® llings and allows the prediction of their relative
stability without using trial wavefunctions involving multiple LLs and projections on
to the lowest LL. The inconsistencies of the original QP hierarchy picture (Haldane
1983, Halperin 1984, Laughlin 1984), namely the appearance of some observed
fractions on high hierarchy levels and the actual compressibility of some fractions
predicted on lower levels, are removed by noting that Laughlin QPs of a given type
form incompressible Laughlin states of their own only at certain ® lling factors.

7.7. Prescription for low-energy multiplets
The discussion presented in the preceding sections can be summarized in the

form of a general prescription for the angular momentum multiplets forming the
low-energy sector in FQH systems.

(i) The pseudopotential V …R† describing the Coulomb repulsion in an iso-
lated (lowest or excited) LL decreases when the relative pair angular
momentum R increases, that is when the pair angular momentum L 12
decreases.

(ii) Multiplets with a lower total angular momentum L have a lower expecta-
tion value of the pair angular momentum L 12, and thus a lower energy.

(iii) The energy levels at the same L repel one another owing to the anharmo-
nicity of V …R†. As a result, low values of the total angular momentum L
for which many independent multiplets occur are more likely to have some
states at lower energy than neighbouring L values with few multiplets.

(iv) Relatively higher multiplicities NL tend to reoccur at the same values of L
for single-particle angular momenta l* ˆ l ¡ p…N ¡ 1†. These values coin-
cide with predictions of the mean-® eld CF picture.

(v) The many-body Hilbert spaces corresponding to low angular momenta L
with large multiplicities NL (as predicted by the mean-® eld CF picture)
contain some states with small grandparentage from pair states of largest
repulsion.
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(vi) If V …R† decreases more quickly with decreasing R than the harmonic
pseudopotential, the low-lying many-body states avoid grandparentage
from pair states of largest repulsion and thus occur at total angular
momenta predicted by the mean-® eld CF picture.

(vii) The gap above the low-energy states that avoid grandparentage from pair
states of largest repulsion is governed by the appropriate difference in
pseudopotential parameters. This gap does not collapse in the thermo-
dynamic limit.

(viii) At ® lling factors at which the low-energy band separated from the rest of
the spectrum by a gap contains only a non-degenerate (singlet) L ˆ 0
ground state, the system is incompressible and exhibits the FQH effect.

} 8. SUMMARY
We have shown that the success of the mean-® eld CF picture in correctly and

simply selecting the band of lowest-energy multiplets of FQH systems is not due to a
cancellation between Coulomb and CS interactions among ¯ uctuations, which are
described by totally di� erent energy scales. The reason for the success is related to
the nature of the Coulomb pseudopotential V …R† in the lowest LL.

We have identi® ed an exact dynamical symmetry of the hard-core repulsive
pseudopotential. Because of this symmetry, the many-body energy spectrum splits
into bands of eigenstates which avoid an increasing number of pseudopotential
parameters of largest repulsion (the wavefunctions of these eigenstates contain
Jastrow pre-factors

Q
i<j…zi ¡ zj†m with increasing exponents m ). The bands are

separated by gaps which are associated with the di� erence of appropriate pseudo-
potential parameters and do not collapse in the thermodynamic limit. The incom-
pressibility of Laughlin ¸ ˆ …2p ‡ 1†¡1 states in a system with hard-core repulsive
interactions results from the fact that the non-degenerate (L ˆ 0) ground state is the
only state in its (lowest energy) band at these ® lling factors. The mean-® eld CF
picture can be applied to such systems.

We have de® ned the class of s̀hort range’ pseudopotentials V …R†, for which the
Laughlin correlations (avoiding strongly repulsive pair states) minimize the total
interaction energy. The occurrence of distinct bands and Laughlin± Jain incompres-
sible ground states in the energy spectrum of systems with short-range interactions is
a consequence of weakly broken dynamical symmetry of the hard-core repulsive
pseudopotential. The pseudopotential V …R† has a short-range character in a given
range of relative pair angular momentum R if V …R† decreases in this range more
quickly as a function of R than the harmonic pseudopotential. The Coulomb repul-
sion in the lowest LL belongs to the short-range class in the entire range of R, and
hence Laughlin correlations occur at all Laughlin ® lling factors ¸ ˆ …2p ‡ 1†¡1.

We have found that the pseudopotentials in excited LLs decrease more slowly
with increasing R and do not have short-range character at the smallest values of R.
As a result, the Laughlin correlations occur in excited LLs only below a certain ® lling
factor. For example, we have shown that the ¸ ˆ 2 ‡ 1

3 state does not have Laughlin
correlations in the ® rst excited LL, while ¸ ˆ 4 ‡ 1

3 and 4 ‡ 1
5 states do not have such

correlations in the second excited LL. On the other hand, the ¸ ˆ 2 ‡ 1
5 state has

Laughlin correlations and an excitation gap comparable with the ¸ ˆ 1
5 state.

Because the mean-® eld CF model describes systems with Laughlin correlations, it
is only valid at lower ® llings of excited LLs.
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The CF hierarchy uses the mean-® eld approach for the QPs and therefore should
fail unless the QP pseudopotential has a short-range nature. We have found that QPs
have Laughlin correlations at some of the Laughlin ® lling factors but not at others.
This explains incompressibility of hierarchy ground states at ¸ ˆ 2

7 and compressi-
bility at such hierarchy fractions as ¸ ˆ 4

11 or 4
13. Also, since the Laughlin QE and QH

energies are governed by di� erent electron pseudopotential parameters, the QE
energy is higher than the QH energy.

We have also studied the validity of the atomic Hund’ s rule for systems with
di� erent pseudopotentials and shown that a modi® ed Hund’ s rule remains valid for
FQH systems on a Haldane sphere. According to this rule, the FQH states with a
small total angular momentum L tend to have a lower energy than states with a large
L . This rule is strict for the harmonic interaction for which the energy is completely
independent of correlations. Strong anharmonicity of the pseudopotential can inva-
lidate this rule and favour either Laughlin correlated states at low L with large
number of multiplets if the pseudopotential has a short-range nature, or other
type of correlations (e.g. possible pairing) if the pseudopotential is subharmonic.
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