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We utilize the KOH theorem to prove the unimodality of integer partitions with
at most a parts, all parts less than or equal to b, that are required to contain either
repeated or consecutive parts. We connect this result to an open question in quan-
tum physics relating the number of distinct total angular momentum multiplets of
a system of N fermions, each with angular momentum l, to those of a system in
which each Fermion has angular momentum l*=l&N+1. � 2001 Academic Press
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1. INTRODUCTION

Mathematics and physics have a symbiotic relationship. Insights in one
field often lead to advances in the other. For example, the proof of a purely
mathematical construct, the alternating sign matrix theorem, was only
made possible with the tools developed by physicists studying the statistical
mechanics of square ice [2]. In this paper, tools from partition theory
(specifically, recent combinatorial proofs due to O'Hara and Zeilberger
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[3, 4, 12, 13]) make it possible to answer an open question of quantum
physics involving the composite Fermion model of the fractional quantum
Hall effect.

The study of electronic properties of quasi-two-dimensional systems
under high magnetic fields and low temperatures has been a fruitful area of
investigation garnering the 1985 and 1998 Nobel Prizes in physics for the
discovery and explanation of the integral [10] and fractional [6, 9] quantum
Hall effects. For completeness, we provide a brief description of both of
these effects, though a true physical understanding is not required to
appreciate the partition results. Mathematicians may skip the physics
presented in the next two paragraphs.

The integral quantum Hall effect results from the highly degenerate
nature of the single particle energy levels =n=(n+ 1

2) �|c , where n is a
non-negative integer and the cyclotron energy �|c is proportional to the
applied magnetic field B0 . Each level contains N,=AB0 �,0 single particle
states, where A is the area of the sample and ,0=�c�e is the quantum of
magnetic flux. Each particle state can be occupied by a single electron or
can be empty. When the ratio & of the number of electrons N to N, is an
integer, an energy gap �|c separates the ground state from the nearest
excited state. This gap causes the integral quantum Hall effect. When &
takes on a value corresponding to an odd denominator fraction (e.g.,
&= 1

3 , 1
5 , 2

3 , 2
5 , ...) the fractional quantum Hall (FQH) effect is found. The

energy gap causing the FQH effect results from the Coulomb interaction
between the electrons in the highly degenerate single particle states of the
partially filled energy level.

A simple intuitive understanding of the FQH effect has been obtained
from the composite Fermion (CF) model [5]. An electron constrained to
move on the surface of a sphere in the presence of a radial magnetic field
of constant magnitude can be described by an eigenvector |l, m) , where l

is the angular momentum of an individual electron and m is its projection
onto a given direction. According to elementary quantum mechanics the
allowed values of m belong to the set Ml=[&l, &l+1, ..., l&1, l]
where for the present case l is either an integer or half integer, i.e., 2l # Z.
Many electron eigenfunctions can be constructed from antisymmetrized
products of single particle eigenfunctions >N

i=1 |l, mi) in which every mi in
a given product must be a different member of the set Ml . We represent
such a state by m=(m1 , m2 , ..., mN) where l�m1>m2> } } } >mN�&l

and refer to it as an M-state if �N
i=1 mi=M. From the ( 2l+1

N ) distinct
products obtained by choosing N different values of mi from the 2l+1
members of Ml , we can form linear combinations |L, M, :) which are
eigenfunctions of the total angular momentum operator L� =�N

i=1 l� i

(where l� i is the angular momentum operator of the i th particle of angular
momentum l) and of M=�N

i=1 mi . The label : is used to distinguish
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distinct angular momentum multiplets (the 2L+1 states |L, M) with M
belonging to ML are referred to as a multiplet of angular momentum L) with
the same value of L. Let fl(N, M ) count the number of M-states using N
Fermions of angular momentum l. The number of distinct multiplets of
angular momentum L is defined as

gl (N, L)={ fl (N, L)& fl (N, L+1)
fl (N, L+1)& fl (N, L)

for L�0
for L<0.

(1)

For the non-physicist reader, we now summarize the essential ideas.
A fermion of angular momentum l is a particle that takes on a value from
the set Ml=[&l, &l+1, ..., l], where the number 2l is an integer. In an
N-fermion system of angular momentum l, all fermions will have different
values from Ml . We represent such a system by m=(m1 , m2 , ..., mN) where
l�m1>m2> } } } >mN� &l and call it an M-state if �N

i=1 mi=M. We let
fl(N, M) count the number of M-states using N fermions of angular
momentum l. Notice fl(N, M )= fl(N, &M ). In an N-fermion system
where each particle has angular momentum l, the number of distinct multiplets
of (total) angular momentum L, denoted gl(N, L), is the difference between the
number of M states when M equals L and L+1, as defined in Eq. (1).

In this paper we show gl(N, L)�0 and establish the conjecture of Quinn
and Wo� js [8] that the number of distinct multiplets for N Fermions of
angular momentum l is greater than or equal to the number of distinct
multiplets for N Fermions of angular momentum l&N+1. In other
words, for all L,

gl(N, L)�gl&N+1(N, L).

This conjecture was useful in understanding why the mean field composite
Fermion picture correctly predicted the lowest energy band of multiplets
for any value of the applied magnetic field, because the transformation
from N electrons to mean field composite Fermions [7, 8] involves chang-
ing the angular momentum from l to l*=l&N+1.

We illustrate these ideas through a small example. For a given l and N,
define the function Gl(N)=� gl (N, M ) qM. Table I displays Gl (3) for dif-
ferent angular momenta l in 3 particle systems. The term 2q3 in G4(3)
means that there are 2 more ways to express 3 as a sum of three distinct
integers from &4 to 4 than there are to express 4. Notice that simply
decreasing the angular momentum l does not guarantee containment of
distinct multiplets. Comparing G5(3) to G4(3), containment violations
occur for 3-states and 1-states. While 3-states occur at both angular
momenta, the number of distinct multiplets when l=4 exceeds the number
of distinct multiplets when l=5. The 1-state is allowed only when l=4 and
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TABLE I

Calculations of the Number of Distinct Multiplets for a 3 Fermion System
Using Angular Momenta of l=5, 4, 3, 2, 1

l Gl (3)=� gl (N, M ) qM

5 q12 +q10 +q9 +q8 +q7 +2q6 +q5 +2q4 +q3 +q2 +q0

+q&12 +q&10 +q&9 +q&8 +q&7 +2q&6 +q&5 +2q&4 +q&3 +q&2

4 q9 +q7 +q6 +q5 +2q3 +q1

+q&9 +q&7 +q&6 +q&5 +2q&3 +q&1

3 q6 +q4 +q3 +q2 +q0

+q&6 +q&4 +q&3 +q&2

2 q3 +q1

+q&3 +q&1

1 q0

not when l=5. However, by reducing the angular momentum by N&1=2
we see that term-by-term, G5(3)�G3(3)�G1(3) and G4(3)�G2(3).

Studying the relationships between distinct total angular multiplets effec-
tively reduces to a problem of restricted integer partitions. Let Pa(b, c)
denote the set of partitions of c into at most b positive parts, with all parts
less than or equal to a, and let pa(b, c)=|Pa(b, c)|. For a, b>0, the
generating function � pa(b, c) qc is precisely the Gaussian polynomial [1]

_a+b
b &q

=
(1&qa+b)(1&qa+b&1) } } } (1&qb+1)

(1&qa)(1&qa&1) } } } (1&q)
.

The coefficients of this polynomial are unimodal and symmetric about ab�2.
Many elegant proofs of this fact have been discovered (see [12]), but it
was not until 1990 that a direct combinatorial proof was established by
Kathy O'Hara [4]. Subsequent work by Zeilberger [12, 13] distilled
O'Hara's combinatorics into the powerful KOH theorem. We utilize the
KOH theorem to prove the unimodality of integer partitions with at most
a parts, all parts less than or equal to b, that are required to contain either
repeated or consecutive parts. This further restriction will be the key to
unlocking the Fermion conjecture.

2. RESTRICTED INTEGER PARTITIONS AND UNIMODALITY

We represent a partition in Pa(b, c) by a b-tuple y=( y1 , y2 , ..., yb)
where a� y1� y2� } } } � yb�0 and �b

i=1 y i=c. We say y has repeated or
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consecutive parts if yi+1= y i or yi&1 for some 1�i<b. Notice that a par-
tition y with fewer than b&1 positive parts falls in this category since
yb&1= yb=0. Let ra(b, c) count the number of partitions in Pa(b, c)
that have repeated or consecutive parts. We wish to show that for a, b>0,
the coefficients of the generating function R(a, b; q)=� ra(b, c) qc are
unimodal and symmetric about ab�2.

Observe that the subset of partitions in Pa(b, c) without repeated or
consecutive parts can be put into one-to-one correspondence with
Pa&2b+2 (b, c&b(b&1)) via the bijection

( y1 , y2 , ..., yb&1 , yb) W ( y1&2(b&1), y2&2(b&2), ..., yb&1&2, yb).

Thus

R(a, b; q)=: ( pa(b, c)& pa&2b+2(b, c&b2+b)) qc

=_a+b
b &q

&qb2&b _a&b+2
b &q

.

The fact that [ a+b
b ]q and qb2&b[ a&b+2

b ]q are both unimodal and symmetric
about ab�2 does not guarantee that their difference has the same feature.
Fortunately, we can appeal to the KOH Theorem, which we state here
using the formulation from Bressoud [3].

Theorem 2.1 [KOH].

_a+b
b &q

= :
y # Pb(b, b)

q y2
1+ } } } + y2

b&b `
b

i=1
_(a+2) i&Yi&1&Yi+1

yi& yi+1 &q
,

where yb+1=0, Y0=0, and Yi= y1+ } } } + y i for i=1, ..., b+1.

As shown in [13], all summands of the KOH identity are unimodal and
symmetric about ab�2 and consequently so is their sum. The partition
(b, 0, ..., 0) # Pb(b, b) contributes the term qb2&b[ (a+2)&b

b ]q to the sum.
Consequently R(a, b; q) is the sum of the remaining terms and hence is also
unimodal and symmetric about ab�2, as desired.

Interestingly, the generating function whose coefficients enumerate
restricted partitions with repeated parts need not be unimodal, nor will the
generating function that enumerates restricted partitions with consecutive
parts. For example when a=b=2, the generating functions are 1+q2+q4

and q+q3, respectively.
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3. CONNECTIONS TO QUANTUM PHYSICS

Returning to our original problem, let Fl (N, M) denote the set of
M-states using N Fermions of angular momentum l. For m # Fl (N, M)
the bijection

(m1 , m2 , ..., mN&1 , mN)

W (m1+l&N+1, m2+l&N+2, ..., mN&1+l&1, mN+l)

establishes a one-to-one correspondence between Fl (N, M) and P2l&N+1 (N,
M+Nl&N(N&1)�2). This correspondence is valid even when l is a half-
integer. Hence we have the generating function

:
Nl&N(N&1)�2

M=N(N&1)�2&Nl

fl (N, M) qM=qN(N&1)�2&Nl _ 2l+1
N &q

. (2)

Since [ a+b
b ]q is unimodal and symmetric about ab�2, it follows that

� fl (N, M ) qM is unimodal and symmetric about 0. Thus for M<0,
fl (N, M)� fl (N, M+1) and for M�0, fl (N, M )� fl (N, M+1); so
gl (N, M )�0.

We are now ready to establish the Quinn and Wo� js conjecture.

Theorem 3.1. The number of distinct multiplets for N Fermions of total
angular momentum l is greater than or equal to the number of distinct multiplets
for N Fermions of angular momentum l&N+1. In other words, for all M,

gl(N, M )�gl&N+1(N, M ). (3)

Proof. This is equivalent to proving for N, l>0, and for M�0, that

fl (N, M)& fl (N, M+1)�fl&N+1(N, M )& fl&N+1(N, M+1),

or equivalently,

fl(N, M)& fl&N+1(N, M )�fl (N, M+1)& fl&N+1(N, M+1).

Hence it suffices to show that for fixed N, l, S(l, N; q)=� ( fl (N, M)&
fl&N+1(N, M)) qM is unimodal and symmetric about M=0. From Eq. (2),
we have

S(l, N; q)=qN(N&1)�2&Nl _2l+1
N &q

&qN(N&1)�2&N(l&N+1) _2l&2N+3
N &q

=qN(N&1)�2&Nl {_2l+1
N &q

&qN 2&N _ 2l&2N+3
N &q = .
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Substituting a=2l&N+1, b=N reduces the braced factor to R(a, b; q),
which from Section 2 is unimodal and symmetric about ab�2=Nl&
N(N&1)�2. Thus, S(l, N; q) is unimodal and symmetric about 0, as
desired. K

Repeatedly reducing the angular momentum by N&1 gives the
immediate corollary:

Corollary 3.1. For a positive integer k, the number of distinct multi-
plets for N Fermions of total angular momentum l is greater than or equal
to the number of distinct multiplets for N Fermions of total angular momen-
tum l&k(N&1). In other words, for all M,

gl(N, M)�gl&k(N&1)(N, M ).

The preceding analysis can also be applied to quasi-particles called
bosons. A boson of angular momentum l takes on a value from the set Ml

where l is again an integer or half-integer. An N-boson system of angular
momentum l differs from a N-Fermion system of angular momentum l in
that bosons may take on repeated values from Ml . We represent such a
system by z=(z1 , z2 , ..., zN) where l�z1�z2� } } } �zN�&l. Here
M-states and the number of distinct multiplets of a given total angular
momentum are defined as before. There is a one-to-one correspondence
between N-Fermion systems with angular momentum l and N-boson
systems with angular momentum l& 1

2 (N&1), via the bijection

(m1 , m2 , ..., mN&1 , mN)

Aa

(m1& 1
2 (N&1), m2& 1

2 (N&1)+1, ..., mN&1

& 1
2 (N&1)+(N&2), mN& 1

2(N&1)+(N&1)).

So the number of distinct multiplets for N Fermions each with angular
momentum l exactly equals the number of distinct multiplets for N bosons
each with angular momentum l& 1

2 (N&1).1 Therefore, analogous results
for bosons hold.
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