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Abstract. A flux attachment transformation is derived for correlated composite fermions in their partially filled second
Landau level. The transformation generates a hierarchy of “second generation” incompressible quantum liquids at electron
filling factors 1/3 < νe < 2/5. The hierarchy stems from a zero-energy ground state of an appropriate model pseudopotential
and it includes the entire family of quantum Hall states observed in experiment.
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INTRODUCTION

In the “second generation” (G2) of fractional quantum
Hall (FQH) states [1], composite fermions (CFs) [2]
form incompressible liquids in their partially filled sec-
ond Landau level (LL). Due to the specific form of CF–
CF “residual” interaction [3], correlations in partially
filled CF LLs are different [4] from correlations known in
the LLs of electrons (e.g., from Laughlin or Moore–Read
correlations). Therefore, flux attachment procedure con-
verting a correlated CF liquid into filled shells of a new
kind of hypothetical, less strongly interacting quasipar-
ticles must differ from the original Jain’s transformation
[2] used to define the CFs from the electrons.

Such “G2 transformation” attaching flux to the CFs
is derived here. It naturally generates a series of incom-
pressible CF liquids at the correct (experimentally ob-
served) electron LL filling factors νe = 3/8 and 4/11,
and predicts a slightly weaker G2-FQH state at ν = 9/25.
Moreover, it correctly predicts the “shift” function γ(ν)
relating LL degeneracy g to the particle number N in fi-
nite systems on a sphere, g−1 = ν−1N−γ(ν), known to
depend on the particular form of correlation responsible
for the emergence of incompressibility at a given ν .

MODEL

In order to identify incompressible CF liquids we per-
form exact diagonalization for N interacting fermions
of charge q confined to a Haldane sphere of unit ra-
dius [5]. The magnetic monopole of strength 2Q (i.e.,
flux 4πB = 2Qφq, where φq = hc/q is the flux quantum)
produces radial field B yielding magnetic length scale
λ ≡

√
h̄c/qB = Q−1/2 at the surface. The s-th LL is a

multiplet of single-particle angular momentum l = Q+s.

Interaction among CFs in their second LL is described
by a pseudopotential (dependence of pair interaction en-
ergy V on relative angular momentum R = 1, 3, . . . [6])
that is dominated by a single largest coefficient at R = 3
[3]. This is very different from repulsion in the lowest
electron LL (strong maximum at R = 1, yielding Laugh-
lin correlations [7]), and also different from the behavior
in higher electron LLs, in which always V (1) > V (3).

RESULTS AND DISCUSSION

The G1-FQH states are predicted by Jain’s CF theory [2],
in which correlated electrons convert into nearly free CFs
by binding some of the external magnetic field B. Flux
2φe pointing opposite to B is attached to each electron,
leaving a reduced effective field BCF = B−2ρφe (ρ being
2D concentration) seen by the CFs and corresponding to
an increased effective filling factor νCF = (ν−1

e − 2)−1.
Electrons at νe become incompressible when CFs fill a
number of shells, i.e., at νCF equal to an integer.

The G2-FQH states [1] correspond to 1 < νCF < 2. The
strongest states νe = 4/11 and 3/8 have νCF = 4/3 and
3/2, i.e., ν = 1/3 and 1/2 partial fillings of the second
CF LL. For description of correlated CFs, an intuitive
model analogous to Jain’s flux attachment would be use-
ful. Hence, we seek conversion of incompressible many-
CF states to filled shells of (essentially) noninteracting
hypothetical fermions to be called “G2-CFs” or CF∗’s.

First we identify the maximum-density zero-energy
(E = 0), zero-angular-momentum (L = 0) ground state of
a model pseudopotential V (R) = δ3(R) ≡ δR,3 which
captures the essence of the actual CF–CF interaction.
From exact diagonalization of N ≤ 10 fermions inter-
acting through V = δ3 in LLs with different l we find
such E = L = 0 series at 2l = 5N − 9, extrapolating to
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FIGURE 1. Energy spectra (energy E vs. angular momentum
L) of N ≤ particles with model interaction V = δ3, calculated
on a sphere with shell angular momentum l = (5N −9)/2.

N/2l → ν = 1/5 in large systems. The energy spectra
for N ≤ 8 are shown in Fig. 1. CF pairing in these ground
states is evident from Haldane amplitudes (not shown).

Conversion from 2l = 5N−9 to 2l∗ = N−1 of a filled
CF∗ shell is achieved by the following transformation

2l∗ = 2l−4(N−2). (1)

Attributing degeneracy of the CF-LL to fictitious mag-
netic flux, Eq. (1) can be interpreted as attachment of
p = 4 flux quanta to each CF. The factor (N − 2) sug-
gests that each CF∗ sees an average flux from all but one
other CFs, which simply reflects the CF pairing.

Transformation (1) can be naturally extended to

2l∗ = |2l− p(N−2)|. (2)

with an arbitrary number p of flux quanta attached to
each CF (odd values of p must also be admitted due
to pairing: path of a given particle can only encircle a
whole other pair). Let us consider an arbitrary number
|n| of completely filled CF∗ shells, with the effective
magnetic field pointing either in the same or in opposite
direction to the fictitious external field giving rise to the
degeneracy of the CF LL. The latter case, corresponding
to 2l < p(N − 2), will be conveniently distinguished by
a negative sign of n.

The filling of CF∗ shells yields a family of CF states at

2l = (p+n−1)N − (2p+n), (3)

extrapolating to ν ≡ lim(N/2l) = (p+n−1)−1 on a plane
(some fractions ν result for two combinations of p, n).
By construction, Eq. (3) includes the (p,n) = (4,1) zero-
energy state at 2l = 5N − 9. Remarkably, the ν = 1/3
state at 2l = 3N−7 also emerges as (4,−1), while (1,1)
reproduces the familiar ν = 1/2 series at 2l = 2N−3.

To check which of the (p,n) states of Eq. (3) actually
occur for the interacting CFs, we computed ground state
energies as a function of N and 2l. Results are shown in
Fig. 2. The largest excitation gaps ∆ occur for (p,n) =
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2l
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FIGURE 2. Top: ground state energy per particle E/N (also,
lowest energy at L = 0) of N ≤ 10 particles with model in-
teraction V = δ3, on a sphere, as a function of shell angular
momentum l. Bottom: excitation gaps of L = 0 ground states.

(4,−1) and (1,1), corresponding to the known [1] FQH
states at νe = 4/11 and 3/8. Sizeable gap is also found
for (4,−2), suggesting a new FQH state at νe = 9/25.
Other states show only marginal incompressibility.

CONCLUSION

We have used numerical calculations on a sphere to
identify the nondegenerate zero-energy ground state of
a model pseudopotential describing CF–CF interaction
in their second LL. This ground state was converted to
a filled shell of next-generation CFs by a flux attach-
ment procedure which is different from the one appli-
cable to electrons in their lowest LL. This procedure
was then used to generate the entire hierarchy of second-
generation FQH states at 1/3 < νe < 2/5, in good agree-
ment with experiments and calculations.
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