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We review the recently developed bipartite composite fermion model for the excitations of the so-called
Pfaffian state, a promising model for the fractional quantum Hall effect at the Landau level filling factor ν = 5/2.
In particular, we demonstrate a necessary ingredient of the non-Abelian braid statistics, namely the degeneracy
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1. Introduction

The fractional quantum Hall effect [1] is a macroscopic
manifestation of the formation of a new phase of matter
in quasi-two-dimensional systems of interacting electrons
exposed to a high perpendicular magnetic field B [2].
The phenomenon consists of the simultaneous quantiza-
tion of the perpendicular (Hall) resistivity ρxy and the
vanishing of the longitudinal resistivity ρxx. It occurs
when electrons fill a particular fraction νn = 1/3, 2/5,
etc., of a massively degenerate Landau level (labeled by
n = 0, 1, . . . ), which is effectively decoupled from all
other levels because of the large cyclotron energy sepa-
ration hωc ∝ B, exceeding the characteristic interaction
(Coulomb) energy e2/λ ∝ B1/2, defined in terms of mag-
netic length scale λ = (~c/eB)1/2.

The family of incompressible electron liquids occur-
ring in the lowest Landau level (n = 0) is well under-
stood in terms of certain novel particles called “com-
posite fermions” (CFs) [3], which are intuitively viewed
as bound states of electric charge and magnetic flux —
specifically, as bound states of electrons and an even
number 2p of magnetic flux quanta φ0 = hc/e. They
move in an appropriately reduced effective magnetic field
B∗ = B − 2pφ0ς, where ς is the electron concentration
(simply connected to the filling factor via νB = φ0ς
or ν = 2πλ2ς), and interact through greatly reduced
residual forces. The effective field B∗ can be converted
to an effective filling factor of the composite fermions,
ν∗ = (ν−1 − 2p)−1. More precisely, the composite
fermions are defined as bound states of the electrons
and pairs of vortices of the many-electron wave function,
which (for N electrons in the lowest Landau level of de-
generacy Nφ = Φ/φ0, where Φ = BA is the total mag-

netic flux through a sample of area A, in the symmetric
gauge) has the form of an antisymmetric polynomial in
the complex electronic coordinates z = x + iy, of a fixed
degree Nφ, multiplied by a symmetric exponential tail.
The emergence of weakly interacting composite fermions
in a system of strongly interacting quasi-two-dimensional
electrons in the Hilbert space severely restricted (as a
result of the single-particle Landau quantization) to an
isolated Landau level is thus equivalent to specifying a
particular form of electronic correlation, given by a sim-
ple Jastrow prefactor of power 2p in the many-electron
wave function.

The composite fermion theory gives an elegant and in-
tuitive understanding of the otherwise unexpected incom-
pressibility observed experimentally at a (universal) se-
ries of filling factors ν = q/(2pq+1), in terms of the non-
-interacting composite fermions at integral fillings ν∗ = q
of the Landau levels, and thus forming a unique ground
state separated from the continuum of excitations by an
effective composite fermion cyclotron gap hω∗c . The two
kinds of quasiparticles — positive quasiholes (QHs) and
negative quasielectrons (QEs), formed in an underlying
incompressible electron liquid as a result of insertion or
removal of a magnetic flux quantum — correspond to
the vacancies in the otherwise full n∗ = q composite
fermion level or to the few composite fermions in the
otherwise empty level n∗ = q + 1. Furthermore, the col-
lective neutral modes correspond to excitonic states of
QE+QH pairs.

The accuracy of the composite fermion predictions is
illustrated in Figs. 1 and 2, showing several examples
of energy spectra, calculated on a sphere [4] for fairly
large finite systems representing a selection of different
filling factors ν. In this geometry, electrons are confined
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to the surface of a unit sphere, the Coulomb interaction
potential is taken proportional to the inverse chord dis-
tance, and the radial magnetic field is produced by a
Dirac monopole of the quantized strength Φ = 2Qhc/e,
yielding the magnetic length λ = Q−1/2 (relative to the
unit radius) and the Landau level degeneracy of 2Q + 1
(n-th Landau level appearing in the form of an angular
momentum shell with ` = Q + n). The many-electron
spectra are then obtained in the form of dependence of
(Coulomb) energy E as a function of total orbital angular
momentum L (the conserved orbital quantum number on
a sphere).

Fig. 1. Demonstration of the accuracy of the compos-
ite fermion prediction of the Coulomb energy spectra
in the partially filled lowest Landau level, calculated in
the spherical geometry for fairly large numbers of elec-
trons N and the magnetic monopole strengths 2Q cor-
responding to the indicated filling factors ν = 1/3 (here,
two different sizes; only the lowest states shown at each
angular momentum L for N = 13), 2/5, and 3/7, corre-
sponding to (respectively) q = 1, 2, and 3 Landau levels
filled by the composite fermions each carrying 2p = 2
magnetic flux quanta. The darker dots are the Coulomb
eigenenergies (obtained from exact numerical diagonal-
ization of the N -body Coulomb Hamiltonians) and the
brighter ones are the Coulomb energies of the corre-
sponding composite fermion wave functions. The states
shown with larger dots are the nondegenerate (L = 0)
ground states and the “magneto-roton” collective modes
(with L > 0 representing quantized wave vectors). The
pairs of numbers indicated for each ground state are
the (exact Coulomb and composite fermion trial) cor-
relation energies per particle, obtained from E/N by
subtraction of the electrostatic contribution from the
charge compensating background, (Ne)2/2.

The composite fermion theory also predicts the exact
form of the many-electron wave functions (appropriate
polynomials) describing both the ground states and their
excitations. The composite fermion wave functions are
generally constructed as

PLLLD2pΨq ≡ PLLL

∏
(zi − zj)

2pΨq(z1, z2, . . .) , (1)

where Ψq is a Slater determinant many-fermion wave

Fig. 2. The same as Fig. 1, but for the composite
fermions carrying 2p = 4 magnetic flux quanta, cor-
responding to the filling factors ν = 1/5, 2/7, and
2/9, or (respectively) to q = 1, −2, and 2 composite
fermion Landau levels (negative q means that the ef-
fective magnetic flux 2Q∗ is oriented opposite to the
original flux 2Q).

function describing q filled Landau levels, possibly with a
number of additional vacancies in the level q and/or par-
ticles in the level q+1, D2p is the Jastrow correlation fac-
tor, and PLLL projects the wave function into the lowest
Landau level. The exponential tail exp(−∑

(|zi|/2λ)2)
is identical for each polynomial, so it is omitted here for
simplicity. Such wave functions were used in Figs. 1 and 2
for comparison with the exact eigenstates of the Coulomb
interaction.

The accumulated wealth of successful tests (numerical
and experimental) have established composite fermions
as a secure framework for our understanding of fractional
quantum Hall effect in the lowest Landau level.

2. Topological degeneracy, non-Abelian statistics

The quasiparticles of incompressible electron liquids in
the lowest Landau level, which in the composite fermion
theory are represented by the vacancies or particles in
the almost full or almost empty composite fermion lev-
els, have fractional charge excess or deficiency associated
with them (±e/q) and are believed to obey Abelian braid
statistics. More exotic many-electron wave functions,
describing ground states with quasiparticle excitations
obeying non-Abelian braid statistics, have been proposed
within the conformal field theories corresponding to the
sets of fields with multi-valued fusion rules. The sim-
plest one is called the Z2 or the Ising theory, which con-
tains one boson “vacuum” field 1, one fermion “electron”
field ψ, and an additional half-fermion “vortex” field σ,
with the following set of fusion rules [5]:

ψ × ψ = 1 , σ × ψ = σ , σ × σ = 1 + ψ , (2)

which say that a pair of fermions is equivalent to a bo-
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son, and a vortex with a fermion together behave as a
vortex, but two vortices may fuse either to a boson or
a fermion, giving rise to a multiply degenerate space for
states with specified positions of vortices. This topolog-
ical degeneracy first occurs for as many as four vortices,
which together can fuse to a boson in two distinct ways
— either fusing in pairs to two fermions or to two bosons:

1 = (σ × σ)× (σ × σ) = 1× 1 + ψ × ψ . (3)

Such topological degeneracy, allowing for multiple quan-
tum states representing an identical spatial configuration
of four (or more) vortices, opens a possibility for non-
-Abelian braid statistics. Indeed, the braids in such a
multi-dimensional subspace of identical configurations re-
quire multi-dimensional (matrix) representation, which is
inherently non-commutative.

The physical realization of the non-Abelian anyon
braid statistics is an exciting prospect on its own con-
ceptual grounds. However, it has also received attention
because of a proposal [6] to employ the topologically de-
generate states and their braiding in the encoding and
manipulation of quantum information which, due to the
inherent protection of such qubits from any local distur-
bances (such as phonons or nuclear spins), would have
immunity from decoherence.

3. Pfaffian many-electron wave function

The simplest many-electron wave function emerging
from the Ising conformal field theory is the so-called Pfaf-
fian state [7] describing a particular form of electron cor-
relation in a half-filled Landau level (ν = 1/2):

ΨPf = D2Pf
(

1
zi − zj

)
≡

∏
(zi − zj)

2Pf
(

1
zi − zj

)
,

(4)
where Pf(aij) denotes the Pfaffian of a skew-symmetric,
even-dimensional matrix a. Writing it explicitly up to
the normalization constant,

Pf(aij) ≡ A(a12a34a56 . . .), (5)

where the operator A denotes antisymmetrization over
all indices. It is clear that ΨPf describes a paired state
of composite fermions (as ensured by the Pfaffian and
Jastrow factors, respectively).

The above Pfaffian wave function represents a unique
zero-energy ground state of a particular three-body
model HamiltonianHPf which in real space take the form
of the three-body contact repulsion and inside a Landau
level corresponds to a simple triplet pseudopotential with
the sole non-vanishing (positive) coefficient at the min-
imum allowed three-body relative angular momentum,
m = 3. (This is reminiscent of the Laughlin ν = 1/3
state — a unique zero-energy ground state of the pair
contact repulsion.)

Quasiholes are created in the Pfaffian ground state in
pairs for each additional flux quantum, and thus each
of them carries a fractional charge e/4. They offer a

particular example of non-Abelian anyons. To be precise,
the space of configurations of 2K localized and distant
quasiholes is 2K−1-fold degenerate, as predicted from the
Ising fusion rules (2).

These features are best illustrated in the exact energy
spectra of the three-body repulsion HPf , as shown on
two examples in Fig. 3. On a sphere, the Pfaffian ground
state occurs at 2Q = 2N − 3, as shown in frame (a) for
N = 14. Increasing flux by one, to 2Q = 2N−2, produces
a pair of Pfaffian quasiholes which (not shown) results in
a band of zero-energy states at L = N/2, N/2 − 2, . . . ,
consistent with the addition rule for two equal angular
momenta. Inserting two flux quanta to the ground state,
to 2Q = 2N − 1 (b), produces a large number of zero-
-energy states corresponding to four quasiholes, whose
counting is not consistent with Abelian statistics, instead
showing an additional topological (exchange) degeneracy.

Fig. 3. The low-energy spectra of the model three-
-body “contact repulsion” Hamiltonian HPf calculated
by exact diagonalization on a sphere at two different
combinations of the fermion number N and magnetic
flux 2Q, corresponding to (a) the Pfaffian ν = 1/2
ground state, and (b) two additional magnetic flux
quanta inserted to such a ground state. The green la-
bels in (b) give the degeneracy of zero-energy levels in-
terpreted as four non-Abelian anyon quasiholes in the
Pfaffian state of N = 12 fermions, consistent with the
prediction of the underlying Ising model.

The interpretation of the Pfaffian wave function (4)
in terms of composite fermion pairing can be expressed
rather intuitively in form of the following sequence of
remarkable (though yet unproven) emergences:

(i) As a result of the Coulomb repulsion within a Lan-
dau level, each electron captures two vortices to become
a composite fermion.

(ii) Because the Landau level is half-filled, the effective
magnetic field B∗ vanishes, and the composite fermions
form a two-dimensional, spin-polarized (due to the Zee-
man effect governed by the original field B) Fermi sphere.

(iii) In the absence of a single-particle energy gap, the
residual interaction among the composite fermions may
(depending on sign) cause instability of the Fermi sphere
through the Cooper pairing of the composite fermions.

(iv) The energy gap for breaking a pair in the result-
ing composite fermion superfluid causes incompressibility
and fractional quantum Hall effect.
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4. Pfaffian state in a half-filled Landau level

The key question is whether the Pfaffian state (with
its exotic excitations) provides a valid description of the
Coulomb ground state. The fractional quantum Hall
measurements at ν = 1/2 (i.e., at half-filling of the lowest
Landau level) are consistent with a compressible phase,
confirmed to be the Fermi sea of composite fermions.
This suggests that the ground state is different from
the Pfaffian, presumably because the residual compos-
ite fermion interaction invoked in the above point (iii) is
insufficient to induce a pairing transition in the Fermi sea
of composite fermions.

However, the analogous experiments at ν = 5/2 show
clear signatures of quantized Hall effect [8]. This im-
plies emergence of an incompressible ground state in the
half-filled second (n = 1) Landau level — the counting
ν = 2 + 1/2 reflecting the double spin degeneracy of the
filled lowest (n = 0) level. The crucial question then be-
comes whether the ν = 5/2 quantum Hall state is equiva-
lent to the Pfaffian state. Of course, the equivalence does
not require that the actual Coulomb wave function be
very close to the Pfaffian wave function (although that
would definitely help). It would be sufficient to show
adiabatic continuity between both ground states [9] and
their excitations. This includes identity of such qualita-
tive features as the spatial uniformity (non-degeneracy),
full spin polarization of the ground state [10], an excita-
tion gap, the particular electric charge (±e/4) and the
braid properties (non-Abelian Ising anyons) of the quasi-
particle excitations, or the number of collective modes.
Further topologically protected features (preserved under
continuous deformation) may include certain dynamical
degeneracies, following from p-wave pairing or from fu-
sion rules.

Let us note that the holonomic form of the Pfaffian
wave function describes a many-electron state exclusively

Fig. 4. Comparison of the Coulomb ground states in
the half-filled second Landau level (ν = 5/2) with the
exact Pfaffian state, in the spherical geometry. Left: de-
pendence of the squared overlaps on the electron num-
ber N = 6 to 20, for the layer widths w = 0 and 3λ
(three magnetic lengths). Right: comparison of the
pair-correlation functions g(r) for N = 20 and the flux
2Q = 2N − 3 = 37. Evidently, positive identification of
the ν = 5/2 state with the Pfaffian state based solely
on such analysis is problematic.

in the lowest Landau level. However, the problem of
electrons in the second Landau level interacting with the
Coulomb interaction can be mapped into that of electrons
in the lowest Landau level with an effective interaction
(using the concept of guiding-center positions), allowing
an exact simulation of the 5/2 problem in the lowest Lan-
dau level.

A comparison of the Pfaffian wave function with the ac-
tual ν = 5/2 state (the Coulomb ground state in the half-
-filled second Landau level) is illustrated in Fig. 4, show-
ing the overlaps (as a function of electron number N)
and comparing the pair-correlation functions (for a fairly
large system, with N = 20).

5. Collective modes of the Pfaffian state

An important aspect of the Pfaffian dynamics is that if
composite fermions indeed form a p-wave paired state at
ν = 5/2, then, in analogy to superconductivity, one can

Fig. 5. The energy spectra of an even and odd number
of fermions, N = 16 and 15, on a sphere, at the Landau
level degeneracy Nφ + 1 corresponding to the magnetic
flux 2Q ≡ Nφ = 2N − 3, for three different Hamiltoni-
ans: HC is the Coulomb interaction in the second Lan-
dau level (n = 1), H1 is the same Coulomb interaction
but with an additional enhancement of the leading pair
pseudopotential (at m = 1) by the value δV1 = 0.04e2/λ
which maximizes the overlap of the ground state with
the Pfaffian state, and HPf is the three-body contact
repulsion for which the exact Pfaffian state is a unique
zero-energy ground state. The low-lying states at the
angular momenta L predicted for the magneto-roton
and unpaired-CF excitations are connected with lines,
and their squared overlaps with the corresponding eigen-
states of HPf are indicated. The emergence of the pair
of dispersions is especially clear forHPf andH1. Graphs
for N = 15 were earlier presented in Ref. [11].

expect two kinds of collective modes: magneto-rotons
(known from the fractional quantum Hall states in the
lowest Landau level and representing excitons of com-
posite fermions) and “unpaired composite fermions”, also
known as “neutral fermions”. The latter are studied con-
veniently by considering systems with an odd number of
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electrons, which necessarily contain an unpaired fermion.
The dispersions of both these modes has been studied
recently by exact diagonalization [11, 12], in sufficiently
large systems to identify a number of significant features.
The examples of energy spectra for an even and odd elec-
tron number N , each one featuring one of the modes, are
shown in Fig. 5.

When the low lying-states of the spectra obtained for
different N and interpreted as either the magneto-roton
or the unpaired CF collective excitations are plotted to-
gether as a function of the wave vector k (for the charge
neutral modes moving along the great circles k = L/R is
trivially connected to the sphere radius R ≡ 1 and orbital
angular momentum L), they produce well-defined curves
representing a pair of continuous energy dispersions.

Fig. 6. Continuous dispersions of the magneto-roton
and unpaired CF (or neutral fermion) collective exci-
tations in the Pfaffian ground state, obtained by over-
laying the discrete energy spectra of repulsive three-
-body Pfaffian Hamiltonian HPf for different fermion
numbers N . k is the wave vector (proportional to an-
gular momentum L). Similar graph was originally pre-
sented in Ref. [11].

As is shown in Fig. 6, which combines the discrete data
points for N = 11 to 19, the dispersions are very clear
for the three-body Pfaffian Hamiltonian HPf (much less
so for a pure Coulomb interaction HC, but rather simi-
larly for its modified version H1 — both not shown). As
it has been discussed in detail in the original paper [11],
the two dispersions are markedly different at short wave
vectors, but — remarkably — converge to the same value
in the limit of large wave vector (kλ > 2). It turns out
that this degeneracy is not accidental [13], instead being
a crucial property of the universality class of paired com-
posite fermion states represented by the Pfaffian wave
function, and it will be explained in the following section.

6. Unpaired CF addition energy

The energy of the bottom of the dispersion shown in
Fig. 6 defines the addition energy of a composite fermion
in the absence of other excitations, or the energy gap of
the Pfaffian ground state for breaking composite fermion
pairs. This gap is evidently non-zero, as required for
an incompressible paired ground state. However, one of
the consequences of the Ising fusion rules (2) is that a
composite fermion can be added at a zero energy cost

in the presence of two widely separated quasiparticles.
This nontrivial prediction has been tested [11] for dif-
ferent model Hamiltonians used in Fig. 5, and indeed
it has been confirmed even for the pure Coulomb repul-
sion — despite the lack of clearly developed dispersion
in Fig. 5 or (not shown) of a clearly developed band of
two-quasiparticle states for this realistic interaction.

The result of the calculation reported in [11] is plotted
in Fig. 7, showing the independence of the 2-quasiparticle
energy of the parity of the electron number N . It is worth
mentioning that the space of two quasiholes (formed at
flux 2Q = 2N−2) or two quasielectrons (at 2Q = 2N−4)
contains the states with all possible angular momenta L,
corresponding to different average QH–QH or QE–QE
distances d. However, as the relation between L and d
is affected by the presence of the neutral fermion, a di-
rect comparison of the 2QP and 2QP+NF energies (or
2QE and 2QE+NF energies) is impossible. Hence, the
energy E shown in Fig. 7 represents an average over all
space (all L-multiplets, weighted by 2L+1), thus includ-
ing the configurations with both distant and nearby QHs
(or QEs) alike. The lack of a significant parity effect in
E(N) points therefore not only to the vanishing of the
neutral fermion addition energy in the presence of dis-
tant quasiparticles, but also to a rather small even/odd
splitting for the nearby quasiparticles. To be more pre-
cise, a small even/odd energy difference is visible for fi-
nite N , but it disappears under extrapolation to the ther-
modynamic limit (with widely separated quasiparticles).
Therefore, in terms of the underlying Ising conformal
field theory, the nearly vanishing gap E(N + 1)−E(N),
for even N , represents the degeneracy of the two possi-
ble distinct fusion channels 1 and ψ in Eq. (2), for well
separated vortices σ. By contrast, it is possible to focus
on the configurations with nearby quasiparticles, realized
for the largest angular momentum values of the low-lying
eigenstates. In this case, we find a negative splitting,
E(N +1)−E(N) < 0, in the thermodynamic limit, indi-
cating that the ψ-channel is energetically preferred over
the identity 1-channel when vortices are in proximity (for
details see Ref. [11]).

7. Bipartite composite fermion model

The above subtle features of the Pfaffian ground
state and its excitation spectrum become evident in
the recently proposed bipartite composite fermion model
[13–15]. The Pfaffian wave function (4) can also be ex-
pressed as

ΨPf = A
∏

i<j

(zi − zj)
3
∏

i<j

(wi − wj)
3
∏

i,j

(zi − wj) , (6)

where the total number of electrons N have been divided
into two equally (N/2) populated partitions “z” and “w”
(as in the “331” bilayer wave function [16]) and A is
the antisymmetrizing operator (under exchanges among
all N fermions). The pairing nature of the above state
clearly follows from the intrapartition correlations (de-
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Fig. 7. The comparison of the total energies of a pair of
quasiparticles (quasielectrons or quasiholes) created by
insertion or removal of a single flux quantum to/from a
state at the magnetic flux 2Q = 2N − 3, with and with-
out an additional neutral fermion (i.e., for an odd or
even electron number N) for systems of different size
and for different Hamiltonians of Fig. 5. The ener-
gies E have been averaged over all 2-quasielectron or
2-quasihole (and/or a neutral-fermion) states. The in-
sensitivity of E to the parity of N , i.e., to the presence
or absence of the quasiparticles, is consistent with the
expectation of zero neutral-fermion addition energy in
the presence of two distant (non-Abelian) quasiparticles.
After Ref. [11].

fined by the Jastrow exponent “3”) being stronger than
the interpartition ones (with exponent “1”).

The above inter- or intrapartition correlations can be
reproduced by an appropriate flux attachment procedure
equivalent to a bipartite composite fermion model with
an effective magnetic field B∗ acting on each composite
fermion partition separately. For example, for a Pfaffian
ground state on a sphere, which results for 2Q = 2N − 3
and an even N , each partition senses the effective mag-
netic flux 2Q∗ = 2Q − 2(N/2 − 1) − N/2 = N/2 − 1,
consistent with its exact filling by N/2 particles. In the
following we shall also carefully examine application of
this model to the Pfaffian excitations.

Let us allow for an arbitrary composite fermion number
imbalance δ between the two partitions, thus introducing
a pair of partition counts

N± =
N ± δ

2
(7)

such that N+ +N− = N and N+−N− = δ ≥ 0. The im-
balance δ has the same parity as N , which can be either
even or odd. The effective flux acting on each partition
is

2Q∗± = 2Q− 2(N± − 1)−N∓ . (8)

Near the Landau level half-filling we also define an off-
set s from the flux corresponding to the Pfaffian ground
state

2Q = 2N − 3 + s . (9)

In attempt to identify the low-energy configurations, let
us now consider a problem of filling two partitions “+”
and “−” (of degeneracy 2Q±+ 1) with N+ and N− com-
posite fermions, respectively. Equation (8) can be conve-
niently rewritten in the following form:

η± ≡ 2Q∗± + 1−N± = s∓ δ , (10)

expressing the quasiparticle numbers η in both partitions
as a function of the offset s and the partition imbalance δ
(and independently of the electron number N or flux 2Q).
The convention is that positive and negative η count the
quasiholes and quasielectrons, respectively.

It has been conjectured [13] that the eigenstates of the
many-electron Pfaffian Hamiltonian HPf (and, possibly,
also of a more realistic Hamiltonian yielding equivalent
dynamics) are ordered in their interaction energy E with
respect to the total cyclotron energy of the corresponding
configuration of composite fermions, denoted by E∗. In
particular, the E = 0 states of HPf will be represented by
the configurations with all composite fermions remaining
in the lowest Landau levels in their respective partitions
which, according to (10), requires

δ ≤ s . (11)

Let us consider each value of s separately. The composite
fermion energy E∗ will be measured in the units of the
effective cyclotron energy ~ω∗c and counted from N/2, so
that E = 0 corresponds to E∗ = 0.

For s = 0, the zero-energy (E = 0) condition (10)
admits a single partition imbalance δ = 0, for which
η+ = η− = 0, implying that in each partition the lowest
Landau level is exactly filled by N+ = N− = N/2 com-
posite fermions. This yields a unique (Pfaffian) state at
L = 0, which can be pictured as

For s = 1, the E = 0 states are possible for two distinct
partition choices, corresponding to the imbalance values
δ = 0 and 1. They all represent a pair of quasiholes in
the Pfaffian ground state. For δ = 0, Eq. (10) yields
η+ = η− = 1, and the quasiholes appear in different
partitions, which is pictured as

For δ = 1, we get η+ = 0 and η− = 2, with both quasi-
holes appearing in the same (“−”) partition, pictured as

The possible values of angular momentum L result
from addition rule for pairs of identical (composite)
fermions, with the angular momenta of individual quasi-
holes given by `± = Q∗±. The result is L = LMAX − 2j,
with j = 0, 1, . . . enumerates the pair states and LMAX =
N/2 and (N − 1)/2 for δ = 0 and 1, respectively.

As δ and N always have equal parities, the two kinds
of E = 0 configurations (distinguished by the imbalance
δ = 0 or 1; for the particular offset s = 1, all representing
two Pfaffian quasiholes) require different parities of N .
Thus, for a fixed parity of N , there is only one kind of
the E = 0 configuration, with all states distinguished by
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an orbital quantum number L. This is consistent with the
lack of topological degeneracy for two Pfaffian quasiholes.

For s = 2, three distinct E = 0 configurations can
have δ = 0, 1, or 2. All of them contain four Pfaffian
quasiholes. Importantly, the two corresponding to the
even δ arise for the same (even) parity of N . Let us look
at them in detail.

For δ = 0, from Eq. (10) we find η+ = η− = 2, with
two quasiholes appearing in each partitions, pictured as

For δ = 2, we have η+ = 0 and η− = 4, with all
quasiholes placed in the same (“−”) partition, pictured as

Again, the allowed total angular momenta L can be
understood by applying addition rules to four quasiholes
with appropriate individual angular momenta ` = Q∗.
We will not list here the whole spectrum, but it is im-
portant to observe that in a sufficiently large system the
small values of L corresponding to a large average quasi-
hole separation will repeat for δ = 0 and 2. Hence,
an identical spatial configuration of four quasiholes in
a system with well-defined N and 2Q can be represented
by two distinct quantum states — here distinguished by
the imbalance δ. This is pleasingly consistent with the
known emergence of the topological degeneracy in a sys-
tem of four Pfaffian quasiholes, implied by the Ising fu-
sion rules (2).

The states corresponding to two or four quasielec-
trons can be identified analogously as the configurations
with the minimum E∗ (except they no longer can have
E∗ = 0). For example, for s = −1, the minimum com-
posite fermion cyclotron energy E∗ = 2 can be achieved
in two ways. For δ = 0, the two quasielectrons are evenly
distributed between the partitions

For δ = 1, they both appear in the same partition

By adding two individual quasielectron angular mo-
menta ` = Q∗ + 1 (note that each quasielectron is rep-
resented by a composite fermion in the second Lan-
dau level) one can readily predict the allowed values of
L = LMAX − 2j with LMAX = N/2 and (N − 3)/2 for
δ = 0 and 1, respectively. In contrast to two-quasihole
states defined unambiguously in the spectra of HPf at
E = 0, the two-quasielectron states cannot be confi-
dently identified in the N -electron spectra because they
all have E > 0. Nonetheless, for odd N , the value of
LMAX = (N − 3)/2 indeed appears to agree with the
spectra of HPf [11]. However, for even N , the value

of LMAX = N/2 seems too high [11] (for an unknown
reason).

Let us now return to the previous case of s = 0 and
look at the neutral modes. The corresponding states
have E∗ = 1; they are possible for two different parti-
tion choices.

For δ = 0, they constitute the first excited band (above
the E∗ = 0 Pfaffian ground state), in the form of an
inter-Landau-level exciton, with both the quasielectron
and the quasihole placed in the same partition (either
“–” or “+”; their equivalence is guaranteed by antisym-
metrization), which can be pictured as

For δ = 1, the E∗ = 1 configurations constitute the
lowest energy band, so one can use Eq. (10) to find
η+ = −1 and η− = 1. This also corresponds to an inter-
-Landau-level exciton, but one with the quasielectron and
the quasihole placed in different partitions (“+” and “−”,
respectively), which can be pictured as

The above pair of neutral modes with δ = 0 and 1
have been identified [13] as the “ordinary” and “topolog-
ical” [15] composite fermion excitons, respectively. The
latter name reflects the involved change in the electron
number parity, and the resulting protection from self-
-annihilation at a constant N . The topological exciton
has been further identified with the Majorana composite
fermions [13].

The allowed angular momenta L of both excitons can
also be predicted from angular momenta addition for the
constituent (distinguishable) quasiparticles: L = 2, 3,
. . . , N/2 for δ = 0 and L = 3/2, 5/2, . . . , N/2 for δ = 1
(except for the absence of L = 1 and L = 1/2 states
which results in a non-trivial way from antisymmetriza-
tion [13, 17]).

Having introduced the composite fermion excitons, we
can now revisit the many-quasiparticle states at s 6= 0. It
can be readily observed that for a given total number of
quasiparticles in the lowest-energy sector, η+ + η− = 2s,
the transitions between different values of imbalance δ,
corresponding to transferring quasiparticles between the
two partitions, are realized by adding one kind of exciton
and removing the other. In particular, the connection
of four-quasiparticle configurations with the same parity
of δ involves an even (but non-zero) number of topological
excitons, which explains their topological distinction.

The bipartite composite fermion model gives natural
insight [13] into several known properties of the Pfaf-
fian state: (i) the odd-even effect [18] for the energy
of a half-filled second Landau level as a function of the
electron number N — associated with the gap to add
an unpaired composite fermion (topological exciton) at
odd N ; (ii) occurrence of two collective modes — un-
derstood as the ordinary and “trans” composite fermion
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Fig. 8. The energy spectra of N fermions on a sphere,
with different interaction Hamiltonians: three-body
contact repulsion (HPf) and the Coulomb repulsion in
the second Landau level (HC). The Coulomb energies
are quoted in the units of e2/λ. In consecutive rows,
the magnetic monopole strengths 2Q are chosen so as to
yield q = 1, 2, 3 filled composite fermion Landau levels
in the bipartite model, corresponding to the indicated
electron filling factors ν = 1/2 (Pfaffian), 4/7, and 3/5.
The labels at the low-energy states give their overlaps
with the bipartite composite fermion wave functions,
whose average energies are also shown with bars. The
numbers above each column of data points indicate the
space dimension at a given L. After Ref. [14].

excitons, and their degeneracy in the large wave vector
limit — corresponding to a large quasielectron–quasihole
separation within the exciton; (iii) degeneracy of wide
two-quasiparticle states that are different in the number
of electrons N — connected by the quasiparticle trans-
fer between the partitions; (iv) the Ising fusion rules —
almost self-evident upon the identification of fields 1, ψ,
and σ with the relevant composite fermion excitations:
ordinary (cis-) exciton, topological (trans-) exciton, and
a single quasiparticle, respectively.

The bipartite composite fermion model has also been
generalized [14] to other filling factors. For example,
the states at ν = 2 + 4/7 = 18/7 and 2 + 3/5 = 13/5
have been accurately described by the bipartite states
with two and three filled Landau levels in each partition,
respectively. Importantly, these fractions are connected
by the particle–hole conjugation (in the second Landau
level) with ν = 2 + 3/7 = 17/7 and 2 + 2/5 = 12/5, at
which the quantum Hall effect has been observed [19].

Numerical evidence for the validity of the bipartite
composite fermion model has been discussed in detail pre-
viously [13, 14]. Below, in Fig. 8, we present only a few
examples of the energy spectra of HPf and HC, for the
N -electron systems representing filling factors ν = 1/2,
4/7, and 3/5 (corresponding to q = 1, 2, 3 filled Landau
levels in each partition). Especially for HPf description
of both the ground states and the excited magneto-roton
bands is accurate, and the issue of adiabatic continuity
between HPf the HC has been explored in Ref. [13].

8. Conclusion

We have characterized the ν = 5/2 fractional quantum
Hall state formed in a half-filled second Landau, which
is believed to be a realization of the so-called “Pfaffian”
ground state with non-Abelian quasiparticles. We have
described the excitations of the Coulomb spectrum and
demonstrated a qualitative signature of pairing in this
state: the existence of a well-defined excitation mode oc-
curring for odd numbers of particles. We have further
reviewed a recently developed model describing the par-
ticular form of pairing correlation in the partially filled
second Landau level in terms of multiple partitions of
non-interacting composite fermions. We have explored in
detail the half-filled case (ν = 5/2). As we have shown,
this model captures in an elegant way several exotic prop-
erties of the Pfaffian phase, including the emergence of
topological degeneracy of multi-quasiparticle configura-
tions (an essential requirement for non-Abelian braid
statistics).
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