
Solid State Communications, Vol. 108, No. 7, pp. 493–497, 1998
Pergamon c© 1998 Elsevier Science Ltd. All rights reserved

0038–1098/98 $ - see front matter

PII: S0038–1098(98)00315-9

COMPOSITE FERMION APPROACH TO THE QUANTUM HALL HIERARCHY: WHEN IT WORKS
AND WHY
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The mean field composite Fermion (MFCF) picture has been quali-
tatively successful when applied to electrons (or holes) in the lowest
Landau level. Because the energy scales associated with Coulomb in-
teractions and with Chern–Simons gauge field interactions are differ-
ent, there is no rigorous justification of the qualitative success of the
MFCF picture. Here we show that what the MFCF picture does is to
select from all the allowed angular momentum (L) multiplets of N elec-
trons on a sphere, a subset with smaller values of L. For this subset,
the coefficients of fractional parentage for pair states with small rela-
tive angular momentum R (and therefore large repulsion) either vanish
or they are small. This set of states forms the lowest energy sector of
the spectrum. c© 1998 Elsevier Science Ltd. All rights reserved

When applied to electrons (or holes) in the lowest Lan-
dau level, the mean field composite Fermion (MFCF)
picture [1] gives a good qualitative description of the
low lying states of fractional quantum Hall systems [2].
The original conjecture that the CF transformation
converts a system of strongly interacting electrons into
one of weakly interacting composite Fermions cannot
possibly be correct because the Chern–Simons inter-
actions among fluctuations are measured on an energy
scale (proportional to magnetic field B) which can be
much larger than the energy scale of the Coulomb in-
teractions (proportional to B1/2). Because so many re-
sults, both of large numerical calculations and of ex-
periments, can be interpreted in terms of composite
Fermions, it is extremely important to understand why
the MFCF picture works. This is the problem we ad-
dress in this letter.

For N electrons on a Haldane sphere [3–6] (con-
taining at the center a magnetic monopole of charge
2S hc/e), the single particle states fall into angular mo-
mentum shells with ln = S + n, n = 0, 1, . . . The nth
shell is 2ln + 1 fold degenerate. The CF transforma-
tion attaches to each electron a flux tube of strength
2p0 flux quanta oriented opposite to the original mag-
netic field. If the added flux is treated in a mean field
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approximation, the resulting effective magnetic field
seen by one CF is B∗ = B − 2p0 (hc/e) ns (ns is the
number of electrons per unit area). An effective CF
filling factor ν∗0 (ν∗0

−1 = ν−1
0 − 2p0) and an effective

monopole strength 2S∗ (2S∗ = 2S−2p0(N−1)) seen
by one CF can also be defined. |S∗| plays the role
of the angular momentum of the lowest CF shell [7].
States belonging to the Jain sequence occur when ν∗0
is an integer. For such integral CF fillings, the ground
state is a Laughlin [8] incompressible liquid state with
angular momentum L = 0. If ν∗0 is not an integer, a
partially occupied CF shell will contain nQE quasielec-
trons (or nQH quasiholes). In the MFCF picture these
states form a degenerate band of angular momentum
multiplets with energy nQEεQE where εQE is the energy
of a single quasielectron (or nQHεQH for quasiholes).
The degeneracy results from the neglect of QP–QP in-
teractions in the MFCF approximation [9].

Hierarchy states [10] outside the Jain sequence are
obtained (when ν∗0 is not equal to an integer) by reap-
plying the CF transformation to residual quasiparti-
cles in the partially filled CF shell. In comparing the
predictions of the CF hierarchy picture with numer-
ical results for states containing three or four quasi-
particles, it is found that the MF approximation is
often qualitatively incorrect. Before worrying about
the reapplication of the MFCF approach to residual
quasiparticles in a partially filled CF shell, it is very
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Fig. 1. Plot of V (R), the pseudopotential coefficient
of the Coulomb interaction potential, as a function of
relative angular momentum R = LMAX − L of a pair
of electrons, for 2S = 15, 20, and 25. L is the pair
angular momentum and LMAX = 2l − 1 its maximum
value. V (R) is measured in units of e2/λ, where λ is
the magnetic length

useful to ask why the MFCF picture applied directly to
electrons (or holes) in a partially filled shell gives qual-
itatively correct results. In light of the different energy
scales describing Coulomb interactions and Chern–
Simons gauge field interactions, the justification can-
not lie in a cancellation between these interactions.

We begin by considering the simple case of three
electrons in the lowest angular momentum shell, with
values of 2S ranging from 2 to 14. In Table 1 we give
the number of times an L-multiplet occurs for a given
value of 2S (upper table is for even values of 2S and
lower one for odd values). Note that the set of values
of L at 2S − 2(N − 1) = 2S − 4 is always a subset of
the set at 2S.

The validity of this result can be easily established
numerically for arbitrary values of N and 2S (includ-
ing values of N larger than 4(S−p0(N−1)+1), where
more than one CF shell is filled). In Fig. 1 the pseu-
dopotential coefficient V (R) is plotted for 2S = 15,
20, and 25, as a function of R, the relative angular
momentum of a pair of electrons.

R is defined as [3–6,9] LMAX−L, where LMAX is the
maximum possible angular momentum of a pair of
electrons each with angular momentum l , and L is the
total angular momentum of the pair. R takes on even
values less than or equal to 2l−1. V (R) is a monoton-
ically decreasing function of R (for the lowest angu-
lar momentum shell), and V (0) is considerably larger
that V (2). In low-lying energy states, electrons have to

avoid having R = 0 because of the large repulsion.
An antisymmetric eigenfunction

∣∣l3, Lα
〉

of three
electrons each of angular momentum l whose total
angular momentum is L can be written as [11,12]∣∣∣l3, Lα

〉
=
∑
L′

FLα(L′)
∣∣∣l2, L′; l , L

〉
. (1)

Here α is an index which distinguishes different mul-
tiplets with the same total angular momentum L.∣∣l2, L′; l , L

〉
is the state in which l1 = l2 = l are added

to obtain pair angular momentum L′, and then l3 = l
is added to L′ to obtain angular momentum L. Note
that even though

∣∣l2, L′; l , L
〉

is not antisymmetric be-
cause l3 is treated differently from l1 and l2 (

∣∣l2, L′
〉

is
antisymmetric under interchange of 1 and 2),

∣∣l3, Lα
〉

is antisymmetric. The factor FLα(L′) is called the co-
efficient of fractional parentage (CFP) associated with
pair angular momentum L′. The two-particle inter-
action matrix element can be conveniently expressed
via the CFPs and the pseudopotential coefficients [9],〈

l3, Lα
∣∣∣V

∣∣∣l3, Lβ
〉
= 3

∑
L′

FLα(L′)FLβ(L′)V (R). (2)

Because of the large Coulomb repulsion at R = 0,
the low lying states will avoid pair angular momen-
tum L′ = L′MAX (corresponding to R = 0). Where can
such states occur? If we choose L′ = L′MAX, then L,
the total angular momentum, must be greater than or
equal to L′MAX− l , the minimum possible value of the
addition of L′MAX and l , the angular momentum of
the third electron. Because L′MAX = 2l − 1, the mini-
mum possible value of L for which R = 0 is L = l −1.
States with L < l − 1 must have R ≥ 2. Note that al-
though we have selected the pair (l1, l2) to give L′, the
CFPs give an eigenfunction of L which is totally anti-
symmetric. Therefore we need not worry about other
pair angular momenta in writing down equation (1).
The next lower value of L′ is L′MAX − 2 (correspond-
ing to R = 2) and states with L < l − 3 must have
R ≥ 4. Further, states with L < l −5 must have R ≥ 6,
and so on. In Table 2 we list the values of 2L for which
the CFP with R = 0 must vanish (i.e. 2L (R ≥ 2)), for
which the CFP with R ≤ 2 must vanish, and for which
the CFP with R ≤ 4 must vanish. The L = 0 state for
2S = 6 is the Laughlin ν = 1/3 state, for 2S = 10 it
is the ν = 1/5 state, and for 2S = 14 it is the ν = 1/7
state.

At 2S = 8 two L = 3 multiplets occur (see Table 1).
The interparticle interaction must be diagonalized in
this two-dimensional subspace. We find that for the
linear combination with the lower eigenvalue, the CFP
for R = 0 almost vanishes (its value is less than 0.001).
A similar thing occurs at 2S = 9 for L = 9/2, at 2S =
10 for L = 4 and 6, at 2S = 11 for L = 9/2, 11/2, and
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Table 1. The number of times an L-multiplet appears for a system of three electrons of angular momentum l = S. Top: even values of
2S; bottom: odd values of 2S. Blank spaces are equivalent to zeros

2S
2L 0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36
2 1
4 1 1
6 1 1 1 1 1
8 1 2 1 1 1 1 1
10 1 1 1 2 1 2 1 1 1 1 1
12 1 2 1 2 2 2 1 2 1 1 1 1 1
14 1 1 1 2 1 3 2 2 2 2 1 2 1 1 1 1 1

2S
2L 1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37
3 1
5 1 1 1
7 1 1 1 1 1 1
9 1 1 1 2 1 1 1 1 1
11 1 1 1 2 2 1 2 1 1 1 1 1
13 1 1 1 2 2 2 2 2 1 2 1 1 1 1 1

Table 2. The allowed values of 2L for a three electron system that must have R ≥ 2, R ≥ 4, and R ≥ 6. The listed 2L values are always
a subset of the allowed L-multiplets given in Table 1

2l = 2S 6 7 8 9 10 11 12 13 14
2L (R ≥ 2) 0 3 2 3,5 0,4,6 3,5,7 2,62,8 3,5,7,92 0,4,6,82,10
2L (R ≥ 4) 0 3 2 3,5 0,4,6
2L (R ≥ 6) 0

15/2, at 2S = 12 for L = 5, 6, 7, and 9, at 2S = 13 for
L = 11/2, 13/2, 15/2, 17/2, and 21/2, and at 2S = 14
for L = 62, 7, 8, 9, 10, and 12. At 2S = 14 for L = 6
there are three allowed multiplets, and diagonalization
of the Coulomb interaction gives CFP for R = 0 which
are very small for two of these states. One can see
that the subset of states at 2S − 2(N − 1) = 2S − 4
of the allowed states at 2S all have CFP for R = 0
which either vanishes identically or is very small (due
to diagonalization of the Coulomb interaction in the
subspace of a given L). But 2S−2(N−1) is just 2S∗ for
2p0 = 2. Thus the CF picture simply picks the subset
of angular momentum multiplets which has FLα(L′)
essentially equal to zero for L′ = L′MAX or R = 0. For
the ν = 1/5 (or ν = 1/7) state, the effective monopole
strength 2S∗ = 2S−4(N−1) (or 2S∗ = 2S−6(N−1))
picks the subset of states with R ≥ 4 (or R ≥ 6).
The MFCF picture assumes the CFPs for R < 2p0 to
vanish and simply neglects V (R) for larger R.

In Fig. 2 we plot the Coulomb energy as a func-
tion of L for the three electron system with 2S = 18.
The dots are L-multiplets that have some fractional
parentage at R = 0, the squares have some fractional
parentage at R = 2 but not at R = 0, etc. Clearly, the
gap associated with V (R = 0) is the largest, that with
V (R = 2) the next largest, etc. The L = 0 ground
state (marked by a diamond) corresponds to ν = 1/9.
Its gap is associated with V (R = 8) and it is almost
unobservable as might be expected. Note that the first
excited band in this figure (states with R ≥ 6) con-
tains multiplets at L = 2, 3, 4, 6, in contrast with the
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Fig. 2. The Coulomb energy of three electrons with
2S = 18. The highest energy states have fractional
parentage with R = 0 (dots), next highest with R = 2
(squares), etc., down to the L = 0 ground state (dia-
mond) which has no parentage with R < 8

MFCF prediction (L = 1, 2, 3).
Up to here we have concentrated on the three elec-

tron system because it is simple and contains the es-
sential physics of our ideas on the validity of MFCF
picture. Note that we have not introduced a second
energy scale (proportional to B); the only energy scale
is e2/λ (λ is the magnetic length) and the Coulomb
interaction is analyzed in terms of its pseudopoten-
tial coefficients V (R). Can we go beyond the three
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electron system? The answer is yes. The coefficients of
fractional grandparentage (CFGP), equivalent to the
CFPs in the case of three particles, allow us to write
the totally antisymmetric N-particle wavefunction as a
combination of wavefunctions which are antisymmet-
ric under interchange of particles 1 and 2 and under
interchange of particles 3, 4, . . . , N, and which have
well defined angular momentum L′ of the pair (1,2).
The wavefunction and energy expansions are analo-
gous to those given in equations (1) and (2),∣∣lN, Lα

〉 =∑
L′

∑
L′′α′′

GLα,L′′α′′(L′)

×
∣∣∣l2, L′; lN−2, L′′α′′; L

〉
, (3)〈

lN , Lα
∣∣V

∣∣lN, Lβ
〉 = N(N − 1)

2
×

∑
L′

 ∑
L′′α′′

GLα,L′′α′′(L′) GLβ,L′′α′′(L′)

V (R). (4)

Tables of CFPs and CFGPs are given in nuclear and
atomic physics books [11,12]. If our picture is correct,
an N particle system should have bands of states with
some fractional parentage for R ≥ 0, others with R ≥
2, etc. In Fig. 3 we show the four electron spectra
for 2S = 9 (Laughlin ν = 1/3 state) and 2S = 15
(Laughlin ν = 1/5 state). In the former case only the
low energy L = 0 state (marked by a square) has R ≥ 2,
all other states have some parentage from R = 0. In the
latter case the entire subset of states which appeared
at 2S = 9 form a low energy band with R ≥ 2, and
the lowest L = 0 state has R ≥ 4.

The CFPs and CFGPs can be found in books or
computed directly. When a value of L contains a num-
ber of multiplets, the set of basis functions and the
CFGPs are not uniquely defined in the absence of in-
teraction, which must be diagonalized within the L-
subspace. We were able to use our numerical code to
determine the squares of the CFGPs by diagonaliz-
ing the Coulomb interaction, and then by calculating
the matrix elements of an interaction where we set
V = 1 for a given R and V = 0 elsewhere. As follows
from equation (4), the expectation values obtained in
this way determine the squares of CFGPs. In all cases
where we expect the CFGP to vanish or to be small
compared to the values for neighboring L-multiplets,
we find that it is so, for N up to 8 and for values of
ν = 1/3, 2/3, 2/5, 2/7, and 2/9.

Two other points are worth mentioning. First, the
idea of choosing a subset of the allowed values of L
for N Fermions each with angular momentum l by
looking only at states that can be obtained by adding
the angular momentum of N Fermions with l∗ =
l − p0(N − 1) is intimately connected with avoiding
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Fig. 3. Energy spectra, E vs L, for a four electron
system with 2S = 9 (a) and 2S = 15 (b). The states in
(a) are a subset of those in (b). In (a) only the lowest
state has R ≥ 2 (square). In (b) the lowest state has
R ≥ 4 (square) and the band of states marked by dots
have R ≥ 2

fractional parentage with R = 0, or R = 2 (for ν ∼
1/5), etc. To have the same concept be valid for resid-
ual quasiparticles in a partially filled CF shell (which
would generate CF hierarchy states [10] like ν = 4/11
or 4/13 that are outside the Jain sequence), the QP–QP
interaction would have to be similar to the Coulomb
interaction (i.e. strongly repulsive for R = 0 and de-
creasing in magnitude with increasing R). This does
not occur for quasielectrons in the first excited CF
shell, but does occur for quasiholes in the lowest CF
shell [10]. Thus it is clear why the CF hierarchy scheme
is often invalid for states outside the Jain sequence.
Second, states with a single quasihole (e.g. in the ν =
1/3 state) have R greater than or equal to the value in
the neighboring Laughlin state (R ≥ 2 for the ν = 1/3
state), while for a single quasielectron there has to be
some parentage for R less than this value (for R = 0
in the single quasielectron state adjacent to ν = 1/3).
This explains why the quasielectron energy is larger
than the quasihole energy; V (R = 0) is much larger
than V (R = 2).

We have shown that the qualitative results of the
MFCF picture can be justified by considering the
subset of L-multiplets obtained by adding N angu-
lar momenta l∗ = l − p0(N − 1). These states have
smaller total angular momentum and larger values
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of the relative angular momentum of pair states. The
L = 0 incompressible ground states at ν = (1+2p0)−1

have fractional parentage for values of R < 2p0 which
is essentially equal to zero, in agreement with the
correlation effects proposed in Laughlin’s original pa-
per [8]. In fact, for model interactions in which V (R)
decreases very rapidly with increasing R (i.e. for very
short range interactions), exact diagonalization gives
exact zeros of the coefficients of fractional parentage
for R < 2p0 instead of the very small values obtained
with the Coulomb interaction. For fractions con-
taining an integer other than unity in the numerator,
we find that the CFGP of one L = 0 state is small
compared to those of other L-multiplets, leading to a
low-lying incompressible ground state. Only a single
energy scale, e2/λ, the Coulomb scale, is involved in
the analysis. The CF transformation is a convenient
way to arrive at a subset of the allowed L values,
however the energy scale of the non-interacting com-
posite Fermions is totally irrelevant.
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