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Abstract

We investigate the charge and spin collective modes induced in a 2D electron gas by a weak electromagnetic pertur-

bation in the presence of a dc magnetic ®eld which makes an angle h with the electron layer. The excitation frequencies

are determined within the framework of the Landau±Silin theory of Fermi liquids by solving a semi-classical equation

for transport in the self-consistent electromagnetic ®eld associated with particle density ¯uctuations. The quasiparticle

interaction is spin dependent and varies parametrically with the degree of spin polarization. In the long wavelength lim-

it, we obtain analytic results for the frequencies of the collective modes as functions of h. Ó 1998 Elsevier Science B.V.

All rights reserved.
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In a 2D electron gas ± n electrons per unit area in
the x̂ÿ ẑ plane imbedded in a positive background
± coherent propagation of spin and charge density
waves occurs at certain values of the frequency x
and wave-vector k, for which the resonance of the
response functions to an electromagnetic perturba-
tion is realized. We investigate the existence of
these collective modes in the case when a dc mag-
netic ®eld is applied at a small angle, h, to the elec-
tron layer. In equilibrium, a strong magnetic ®eld,
B, creates a di�erence in the number, nr, of elec-
tronic spins parallel to B and n�r, the number of an-
tiparallel spins. The degree of spin polarization,
f � �nr ÿ n�r�=�nr ÿ n�r� is a continuous function
of B and takes on any value between )1 and 1.
The orthogonal component, By � B sin h � Bh,

drives a weak cyclotron motion of the electrons,
with a frequency, x�c � eBh=m�c, dependent on
the electron e�ective mass, m� (m� includes the
band structure e�ects).

The electron gas behaves essentially like a Fe-
rmi liquid, and in many instances a phenomeno-
logical description based on the Landau±Silin
theory of Fermi liquids predicted correctly its
properties [1]. A semi-classical approach, which
doesn't consider the Landau quantization of the
electron orbits in the magnetic ®eld, is possible
when the Zeeman spin-splitting energy, c�B, is
much larger than x�c .

The elementary excitations of an interacting
electron system are quasiparticles of momentum
k and spin r. The quasiparticles are described by
the deviation dnkr from thermal equilibrium. The
thermal equilibrium distribution function arises
from the non-interacting ground state (consisting
of two Fermi discs of radii, kFr �

����������
4pnr

p
) by
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adiabatically turning on the electron-electron in-
teraction. The interaction between quasiparticles
is described, in a most general way, by Ukr;k0r0 �
/k;k0 � �r � r0�wk;k0 . Both /k;k0 and wk;k0 depend pa-
rametricaly on f. In the presence of a dc magnetic
®eld which polarizes the electron gas at an angle h,
dn0

k is written, in a notation employing the usual
Pauli spin matrices, as

dn0
k �

dn0
kr ÿi h

2
�dn0

kr ÿ dn0
k�r�

i h
2
�dn0

kr ÿ dn0
k�r� dn0

k�r

 !
: �1�

The interaction of the electron gas with a weak
electromagnetic perturbation creates new quasi-
particles and consequently, induces charge and
spin ¯uctuations, described by a new distribution,
dnk. In a matrix notation, the diagonal terms of dnk

correspond to the charge and longitudinal (parallel
to ẑ) spin response, while the o�-diagonal elements
represent spin-¯ip processes which generate the
magnetization along the x̂ and ŷ axes. The dynam-
ics of these ¯uctuations are determined, in a semi-
classical approximation, by the solution of a trans-
port equation [2]. In the vicinity of a Fermi sur-
face, where quasiparticles are well de®ned [3], the
derivative of the equilibrium distribution function
in respect with the quasiparticle energy, �k, behaves
like a delta function. We introduce a new function,
mkl, to write a solution to the transport equation as
dnk � mk�ÿddn0

k=d�k�. Because of the interaction,
the equations for di�erent k are coupled. It is then
preferable to solve for the Fourier components, in-
dexed by an integer, l, of mk, which is considered a
periodic function of u, the angle made by the qua-
siparticle momentum with the ẑ axis. For a sinusoi-
dal variation of the electromagnetic perturbation,
� ei�xtÿqx�, ml satis®es

�ÿix� ilx�al�ml � ilx�blml ÿ qvF

2

� �a�lÿ1�m�lÿ1� � b�lÿ1�m�lÿ1� ÿ a�l�1�m�l�1�

ÿ b�l�1�m�l�1�� � evF

2
�Eÿdl;1 � E�dl;ÿ1�: �2�

al � 1� �m�=2p�h2� R 2p
0

dueÿilu�/� w�kFr ;kFr
is gen-

erated by the spin-symmetric part of the interac-
tion, whereas bl � �m�r=2p�h2� R 2p

0
dueÿilu�/ÿ

w�kFr ;kF�r
is the Fourier coe�cient of the spin-anti-

symmetric interaction. E� � Ex � iEy is the local
electric ®eld associated with the charge and spin

density ¯uctuations. It is related to the electric cur-
rent, j, through Maxwell's equations, which for the
chosen geometry lead to ix Exqc2=2px2;�
ÿEy�0=2pq� � j [4]. The electric current is just
the sum of all momenta of the bare electrons
weighted by the deviation from equilibrium of
the quasiparticle distribution function,
j �Pk��h k=m��dnk.

The condition of self-consistent oscillations is
equivalent to ®nding those values of the frequency
x for which the determinant of the homogeneous
system satis®ed by ml, developed from Eq. (2), is ze-
ro. An important simpli®cation occurs in the long
wavelength limit, when qvF is much smaller than
x�c . Then, up to terms quadratic in qvF=x�c , the var-
ious excitations are linearly independent, and ana-
lytic results can be obtained for x�q�. Also, the
coupling induced by the external dc magnetic ®eld
is considered up to terms proportional to h2.

The modes that propagate in the system under
the e�ect of the self-consistent electric ®eld are
magnetoplasma oscillations which correspond to
jlj6 1. If xpr � 2pnre2q=�sm� is the plasma fre-
quency of a 2D electron system of spin r, in a di-
electric medium of permitivity �s, the low
frequency collective excitation is

x2
ÿ�q�

� h2

2
x2

pr�a1r ÿ b1r��1ÿ
������������
n�r=nr

p
�

�
�x2

p�r�a1�r ÿ b1�r��1ÿ
������������
nr=n�r

p
�
�

� q2vf rvf �r�a1ra1�r ÿ b1rb1�r�

�
�a0r ÿ

����
nr
n�r

q
b0r� � m�r

m��r
�a0�r ÿ

����
n�r
nr

q
b0�r�

� �
�
����
nr
n�r

q
a1r ÿ b1r� � m�r

m��r
�
����
n�r
nr

q
a1�r ÿ b1�r�

� � : �3�

The ®rst term of Eq. (3) originates in the spin-¯ip
processes along the direction of the dc magnetic
®eld B, which generate contributions to the mag-
netization along the z axis, proportional to h2.
The second term is a spin wave, xÿ � q2, driven
by the l� 0 and l� 1 Fourier components of the
spin-antisymmetric part of the quasiparticle inter-
action, weighted by the ratio of the spin popula-
tion.
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The high frequency solution is a superposition
of two magnetoplasmons, x2

��q� � �x2
r � �x2

�r, with
�xr, the plasma frequency for an electron gas of
spin r modi®ed by the quasiparticle interaction

�x2
r � x2

p a1r � b1r

������������
n�r=nr

p
ÿ h2

4
��4a1r ÿ 3b1r

�
ÿ3� �

������������
n�r=nr

p
�3a1r ÿ 4b1r ÿ 3��

�
: �4�

The longitudinal collective modes have a qua-
dratic f dependence. This is not surprising since
the longitudinal ¯uctuation involve only electrons
whose spin state does not change under the pertur-
bation. As a result, the physical properties of the
system should remain invariant under the change
~B! �ÿ~B�.

In addition to the modes described above, for
jlj > 2, the system supports coupled cyclotron har-
monics associated with the electron motion in the
static magnetic ®eld, By � Bh. These excitations
begin at

x�� �
l
2

x�ralr � x��ral�r �
�������������������������
4x�rx��rblrbl�r

p�
��x�ralr ÿ x��ral�r�2

�
: �5�

They are a ®rst order response in h, since
xr � eBh=m�rc. The coupling between the two
waves is measured by x�rx

�
�rblrbl�r, which re¯ects

the interaction between the opposite spin elec-
trons. At low polarization values, �x�rar ÿ x��ra�r�2
� 4x�rx

�
�rbrb�r. In this approximation, the two cy-

clotron harmonics are

x0
� �

l
2

x�r�alr � blr� � x��r�al�r � bl�r�
"

��x
�
ralr ÿ x��ral�r�2
xrx�rblrbl�r

#
: �6�

The two solutions correspond to a charge mode
���, determined by �al � bl�, the Fourier coe�-
cient of the spin independent part of the interac-
tion, and a spin mode �ÿ�, driven by �al ÿ bl�.

To the lowest order in f the spin symmetric oscil-
lation is a linear superposition of cyclotron har-
monics of each spin, x�� � l x�r�alr � blr�

�
�x��r�al�r � bl�r��=2 . Therefore, the fundamental ab-
sorption (l� 1)occurs at the bare cyclotron fre-
quency, xcr, as required by Kohn theorem. This
is possible because of the renormalization of the
e�ective mass [5].

If the opposite-spin interaction is neglected and
blr is set equal to zero in Eq. (5), the spin and
charge excitations become indistinguishable.

At large polarizations, 1ÿ jfj � 1, and the op-
posite spin interaction, described by bl, becomes
very small. Then, �lx�ralr ÿ lx��ral�r�2 �
4l2x�rx

�
�rblrbl�r. The solution of Eq. (5), is xr �

lx�r alr � blr=�x�ralr ÿ x��ral�r�
� �

. The wave vector
dependence of these excitations is quadratic.

Under the e�ect of the external perturbation,
some electrons change their spin state, their ¯uctu-
ations about the x and y axis being responsible for
the induced transverse magnetization. The dynam-
ics of the spin ¯ip processes is driven by the o�-di-
agonal components of Eq. (2). These spin waves
are excited at

x#!" � ÿ2c�B�1� a1# ÿ l#� �
h2

4
x2

p#��a# ÿ l#�

ÿ
�����������
n#=n"

q
�k# ÿ b#��=x�;

x"!# � 2c�B�1� a1" ÿ l"� �
h2

4
x2

p"��a" ÿ l"�

ÿ
�����������
n"=n#

q
�k# ÿ b#��=x�: �7�

These SDW are spin-antisymmetric properties of
the system and they depend linearly on f.
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