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Abstract

We investigate the charge and spin collective modes induced in a 2D electron gas by a weak electromagnetic pertur-
bation in the presence of a dc magnetic field which makes an angle 6 with the electron layer. The excitation frequencies
are determined within the framework of the Landau-Silin theory of Fermi liquids by solving a semi-classical equation
for transport in the self-consistent electromagnetic field associated with particle density fluctuations. The quasiparticle
interaction is spin dependent and varies parametrically with the degree of spin polarization. In the long wavelength lim-
it, we obtain analytic results for the frequencies of the collective modes as functions of 0. © 1998 Elsevier Science B.V.

All rights reserved.
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In a 2D electron gas —n electrons per unit area in
the x — Z plane imbedded in a positive background
— coherent propagation of spin and charge density
waves occurs at certain values of the frequency w
and wave-vector k, for which the resonance of the
response functions to an electromagnetic perturba-
tion is realized. We investigate the existence of
these collective modes in the case when a dc mag-
netic field is applied at a small angle, 0, to the elec-
tron layer. In equilibrium, a strong magnetic field,
B, creates a difference in the number, n,, of elec-
tronic spins parallel to B and n;, the number of an-
tiparallel spins. The degree of spin polarization,
{=(n, —n;)/(n, — nz) is a continuous function
of B and takes on any value between —1 and 1.
The orthogonal component, B, =B sin 0 ~ B0,
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drives a weak cyclotron motion of the electrons,
with a frequency, o’ = eB0/m*c, dependent on
the electron effective mass, m* (m* includes the
band structure effects).

The electron gas behaves essentially like a Fe-
rmi liquid, and in many instances a phenomeno-
logical description based on the Landau-Silin
theory of Fermi liquids predicted correctly its
properties [1]. A semi-classical approach, which
doesn’t consider the Landau quantization of the
electron orbits in the magnetic field, is possible
when the Zeeman spin-splitting energy, y*B, is
much larger than w}.

The elementary excitations of an interacting
electron system are quasiparticles of momentum
k and spin . The quasiparticles are described by
the deviation dn;, from thermal equilibrium. The
thermal equilibrium distribution function arises
from the non-interacting ground state (consisting
of two Fermi discs of radii, kg, = v/47mn,) by
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adiabatically turning on the electron-electron in-
teraction. The interaction between quasiparticles
is described, in a most general way, by Pipe =
G + (6 -6 )Y, . Both ¢, and , , depend pa-
rametricaly on {. In the presence of a dc magnetic
field which polarizes the electron gas at an angle 0,
on)) is written, in a notation employing the usual
Pauli spin matrices, as
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The interaction of the electron gas with a weak
electromagnetic perturbation creates new quasi-
particles and consequently, induces charge and
spin fluctuations, described by a new distribution,
on,. In a matrix notation, the diagonal terms of dn;
correspond to the charge and longitudinal (parallel
to Z) spin response, while the off-diagonal elements
represent spin-flip processes which generate the
magnetization along the x and y axes. The dynam-
ics of these fluctuations are determined, in a semi-
classical approximation, by the solution of a trans-
port equation [2]. In the vicinity of a Fermi sur-
face, where quasiparticles are well defined [3], the
derivative of the equilibrium distribution function
in respect with the quasiparticle energy, €, behaves
like a delta function. We introduce a new function,
vu, to write a solution to the transport equation as
dny = vi(—ddn}/de;). Because of the interaction,
the equations for different & are coupled. It is then
preferable to solve for the Fourier components, in-
dexed by an integer, /, of v;, which is considered a
periodic function of ¢, the angle made by the qua-
siparticle momentum with the Z axis. For a sinusoi-
dal variation of the electromagnetic perturbation,
~ ello=a) y satisfies
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erated by the spin- symmetrlc part of the interac-
tion, whereas f, = (m ﬂ/2nh2) "dpe 0 (p—

V)i 4. 18 the Fourier coefficient of the spin-anti-
symmetric interaction. £, = E, £ iE, is the local
electric field associated with the charge and spin

density fluctuations. It is related to the electric cur-
rent, j, through Maxwell’s equations, which for the
chosen geometry lead to iw(E.qc?/2nw?,
—E,e0/2nq) = j [4]. The electric current is just
the sum of all momenta of the bare electrons
weighted by the deviation from equilibrium of
the quasiparticle distribution function,
J= S k/mon,.

The condition of self-consistent oscillations is
equivalent to finding those values of the frequency
w for which the determinant of the homogeneous
system satisfied by v;, developed from Eq. (2), is ze-
ro. An important simplification occurs in the long
wavelength limit, when guvg is much smaller than
w;. Then, up to terms quadratic in qvg/}, the var-
ious excitations are linearly independent, and ana-
lytic results can be obtained for w(g). Also, the
coupling induced by the external dc magnetic field
is considered up to terms proportional to 6°.

The modes that propagate in the system under
the effect of the self-consistent electric field are
magnetoplasma oscillations which correspond to
l/|<1. If w,, =2nn,e*q/e;m* is the plasma fre-
quency of a 2D electron system of spin o, in a di-
electric medium of permitivity €, the low
frequency collective excitation is
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The first term of Eq. (3) originates in the spin-flip
processes along the direction of the dc magnetic
field B, which generate contributions to the mag-
netization along the z axis, proportional to 6°.
The second term is a spin wave, w_ ~ ¢°, driven
by the /=0 and /=1 Fourier components of the
spin-antisymmetric part of the quasiparticle inter-
action, weighted by the ratio of the spin popula-
tion.
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The high frequency solution is a superposition
of two magnetoplasmons, w?(g) = @2 + @2, with
@,, the plasma frequency for an electron gas of
spin ¢ modified by the quasiparticle interaction
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The longitudinal collective modes have a qua-
dratic { dependence. This is not surprising since
the longitudinal fluctuation involve only electrons
whose spin state does not change under the pertur-
bation. As a result, the physical properties of the
system should remain invariant under the change
B — (=B).

In addition to the modes described above, for
|7] > 2, the system supports coupled cyclotron har-
monics associated with the electron motion in the
static magnetic field, B, = B0. These excitations
begin at
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They are a first order response in 6, since
w, = eBO/m’c. The coupling between the two
waves is measured by w!w:f;,f;;, which reflects
the interaction between the opposite spin elec-
trons. At low polarization values, (w}o, — wj;a;,)z
< 4w, fs. In this approximation, the two cy-
clotron harmonics are
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The two solutions correspond to a charge mode

(4), determined by (o; + f3,), the Fourier coeffi-

cient of the spin independent part of the interac-
tion, and a spin mode (—), driven by (o; — f3,).

(6)

To the lowest order in { the spin symmetric oscil-
lation is a linear superposition of cyclotron har-
monics of each spin, o = /[w: (o £ B,)
+wi(os = B,,)]/2 . Therefore, the fundamental ab-
sorption (/=1)occurs at the bare cyclotron fre-
quency, w.,, as required by Kohn theorem. This
is possible because of the renormalization of the
effective mass [5].

If the opposite-spin interaction is neglected and
B, 1s set equal to zero in Eq. (5), the spin and
charge excitations become indistinguishable.

At large polarizations, 1 — |{| < 1, and the op-
posite spin interaction, described by f,, becomes
very small. Then, (lwkoy, — lw;rxl,—,)z >
4Pw:w:p,,Bis- The solution of Eq. (5), is w, =
[} [ + Bio/ (@01 — @5os)]. The wave vector
dependence of these excitations is quadratic.

Under the effect of the external perturbation,
some electrons change their spin state, their fluctu-
ations about the x and y axis being responsible for
the induced transverse magnetization. The dynam-
ics of the spin flip processes is driven by the off-di-
agonal components of Eq. (2). These spin waves
are excited at
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These SDW are spin-antisymmetric properties of
the system and they depend linearly on (.
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