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Charged excitons in a dilute two-dimensional electron gas in a high magnetic field
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A theory of charged excitonsX2 in a dilute two-dimensional~2D! electron gas in a high-magnetic field is
presented. In contrast to previous calculations, three boundX2 states~one singlet and two triplets! are found
in a narrow and symmetric GaAs quantum well. The singlet and a ‘‘bright’’ triplet are the two optically active
states observed in experiments. The bright triplet has the binding energy of about 1 meV, smaller than the
singlet and a ‘‘dark’’ triplet. The interaction of boundX2’s with a dilute 2D electron gas is investigated using
exact diagonalization techniques. It is found that the short-range character of thee–X2 interactions effectively
isolates boundX2 states from a dilutee–h plasma. This results in the insensitivity of the photoluminescence
spectrum to the filling factorn, and a rapid decrease of the oscillator strength of the dark tripletX2 as a
function of n21.
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I. INTRODUCTION

The magneto-optical properties of quasi-two-dimensio
~2D! electron systems have been intensively investiga
experimentally1–13 and theoretically.14–30 For a dilute elec-
tron gas, the photoluminescence~PL! spectrum is determined
by a charged-exciton complexX2 and its interaction with
remaining electrons. TheX2 consists of two electrons and
valence hole and is similar to the hydrogen ion H2. Its ex-
istence in bulk semiconductors was first predicted
Lampert,31 but due to small binding energy it has not be
observed experimentally. Stebe and Ainane18 showed that
the binding of the second electron to the excitonX should be
enhanced in 2D systems. Indeed, theX2 has been observe
in semiconductor quantum wells~QW! by Khenget al.1 and
in many related experiments.2–11

The experimental observation stimulated a number of t
oretical works.17–27 It is now well established that the onl
bound X2 state at zero magnetic field is the singlet st
(Xs

2) with the total electron spinJe50. Accordingly, the PL
spectrum shows only two peaks, due to theX andXs

2 recom-
bination, split by theXs

2 binding energyDs . The situation is
much more complicated in a magnetic field. In very hi
fields, MacDonald and Rezayi14 showed that optically active
magneto-excitons do not bind a second electron. They
effectively decoupled from the excess electrons due to
‘‘hidden symmetry,’’15–17 and the PL spectrum is that of
single exciton, irrespective of the number of electro
present.

It was therefore surprising when a boundX2 complex
was discovered via numerical experiments in the lowest L
dau level~LL !.20 The bound complex was a triplet (Xt

2) with
finite total angular momentum and a macroscopic deg
PRB 620163-1829/2000/62~7!/4630~8!/$15.00
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eracy. It was later shown by Palacioset al.21 that an isolated
Xt

2 in the lowest LL has infinite radiative timet t . Two
independent symmetries must be broken to allow for theXt

2

recombination: the ‘‘hidden symmetry,’’14–16,21 due to an
equal strength ofe–e ande–h interactions, and the 2D geo
metrical ~translational! symmetry17,25,32resulting in the con-
servation of two angular momentum quantum numbers. T
‘‘hidden symmetry’’ can be broken by mixing of LL’s
valence-band mixing effects, and asymmetry of the QW. T
translational symmetry can be broken by disorder. Theref
the Xt

2 recombination probability is determined by disord
and scattering by additional electrons, and is expected
disappear with increasing magnetic field. Also, crossing
the Xt

2 and Xs
2 PL peaks must occur at some value of t

magnetic field, whenXt
2 becomes theX2 ground state. This

hypothetical long-livedXt
2 ground state in high-magneti

fields has recently received a lot of attention. Because theXt
2

complexes carry a net charge and form LL’s, they a
expected25,26 to form ~together with remaining electrons! the
multicomponent incompressible fluid states wi
Laughlin-Halperin33,34 ~LH! correlations. Since an exper
mental realization of such states requires reaching the ‘‘h
den symmetry’’ regime~long-lived Xt

2 ground state!, an es-
timate of required magnetic fields is needed.

While variational calculations of hydrogenlikeXs
2 appear

satisfactory,18,22,23 an accurate description ofXt
2 at finite

magnetic fields is extremely difficult. Although Whittake
and Shields24 ~WS! predicted a transition to theXt

2 ground
state in a GaAs/AlGaAs QW of widthw510 nm at the mag-
netic field of B'30 T, the experimental data forB<10 T
that was available at the time3–5 could not verify their result.
A negative answer came recently from Hayneet al.,7 whose
PL measurements in magnetic fields up to 50 T seemin
4630 ©2000 The American Physical Society
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PRB 62 4631CHARGED EXCITONS IN A DILUTE TWO- . . .
precluded such transition. In their spectra,Xs
2 remained the

ground state up to 50 T, and an extrapolation to higher fie
ruled out the singlet-triplet crossing at any near valu
Moreover, in clear disagreement with Ref. 21, strongXt

2 PL
was detected, whose intensityincreasedwith increasing the
magnetic field, and at 13.5 T exceeded that of theXs

2 . Re-
sults of Hayneet al. not only disagreed with the model o
WS, but also suggested that a picture21,25,26 of long-lived
Xt

2’s forming the low-energy states of ane–h plasma,
worked out for a strictly 2D system (w50) in the lowest LL,
might be totally inadequate to realistic GaAs systems. T
suspicion was further reinforced by the unexplained lack
the sensitivity of PL to the filling factor of the electron ga
The source of disagreement might be either in the descrip
of bound X2 states or in the description of its interactio
with excess electrons.

In this paper we address both issues. We report on
tailed numerical calculations of the energy and PL spectr
e–h systems at high-magnetic fields. Using Lanczos-bas35

methods we were able to include in our model the effects
Coulomb interaction, LL mixing, finite QW width, and rea
istic Zeeman and cyclotron splittings. Our calculations p
dict the existence of a new, optically active bound stateXtb

2

of the triplet charged exciton. The identification of this ne
state as the tripletX2 state observed in PL explains the pu
zling qualitative disagreement between earlier theory and
periments. The ‘‘bright’’Xtb

2 state is distinguished from th
‘‘dark’’ state Xtd

2 found in earlier calculations,20,21,24–26

which is the lowest-energy tripletX2 state at high-magnetic
field but remains undetected in PL experiments~however,
see also Ref. 36!. Energies and oscillator strengths of a
bound complexesX, Xs

2 , Xtb
2 , andXtd

2 , are calculated as a
function of the magnetic field and QW width. The transitio
to theXtd

2 ground state atB'30 T is confirmed.
The interaction ofX2’s with additional electrons is also

studied. Because this interaction has short range, it ef
tively isolates the boundX2 states from remaining electron
and only weakly affects PL from dilute systems, as obser
by Priestet al.6 In particular, collisions ofXtd

2 with surround-
ing electron gas at filling factorsn,1/5 do not significantly
enhance its oscillator strength. This explains why this stat
not observed in PL.

II. MODEL

In order to preserve the 2D translational symmetry of
infinite QW in a finite-size calculation, electrons and ho
are put on a surface of the Haldane sphere37,38 of radiusR.
The reason to choose the spherical geometry for calculat
is strictly technical and of no physical consequence for
results. Because of the finite LL degeneracy, the numer
calculations on a sphere can be done without cutting off
Hilbert space and thus without breaking the 2D translation
rotational symmetry. This allows exact resolution of the tw
quantum numbers conserved due to this symmetry: total
gular momentum projectionM and an additional angula
momentum quantum numberK associated with a partial de
coupling of the center-of-mass motion in a homogene
magnetic field.32,39 Let us note that in earlier calculation
WS ~Ref. 24! and Chapmanet al.23 used planar geometr
s
.
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and could not resolve the good quantum numberK, which is
essential to correctly identifying the boundX2 states and
further to accurately calculating their energy and PL. T
exact mapping between quantum numbersM and K on a
plane and the 2D algebra of the total angular momentumL
on a sphere~and between the respective Hilbert eigensu
spaces! allows conversion of the results from one geome
to the other~see Ref. 40 for the one-component, electr
system!. The energy spectrum of ane–h system whose tota
charge does not vanish consists of degenerate LL’s.39 On a
sphere, these LL’s have the form of degenerate total ang
momentum~L! multiplets. The multiplets on a sphere a
labeled byL and different states within each multiplet a
labeled by differentLz , while on a plane, the LL’s are la
beled byL5M1K and different states within each LL ar
labeled by differentK50,1,2, . . . ~note that a number o
independent multiplets or LL’s can occur at the sameL or
L). The price paid for closing the Hilbert space witho
breaking symmetries is the surface curvature that modi
interactions. However, if the correlations to be modeled h
short range that can be described by a small character
length d, the effects of curvature are scaled by a small p
rameterd/R, and can be eliminated by extrapolating the r
sults toR→`. Therefore, despite all differences, the sphe
cal geometry is equally well suited to modeling bou
complexes as to the fractional quantum Hall systems~as
originally used by Haldane37!.

The detailed description of the Haldane sphere model
be found e.g., in Refs. 37, 38 and 40–42 and~since it is not
essential for our results! it will not be repeated here. The
magnetic fieldB perpendicular to the surface of the sphere
due to a magnetic monopole placed in the center. The mo
pole strength 2S is defined in the units of elementary flu
f05hc/e, so that 4pR2B52Sf0 and the magnetic length i
l5R/AS. The single-particle states are the eigenstates
angular momentuml and its projectionm and are called
monopole harmonics. The energies« fall into (2l 11)-fold
degenerate angular momentum shells separated by the c
tron energy\vc . The nth (n>0) shell ~LL ! has l 5S1n
and thus 2S is a measure of the system size through the
degeneracy. Due to the spin degeneracy, each shell is fu
split by the Zeeman gap.

Our model applies to the narrow and symmetric QW
and the calculations have been carried out for the Ga
AlGaAs structures with the Al concentration ofx50.33 and
the widths ofw510, 11.5, and 13 nm. For such system
only the lowest QW subband need be included and the
clotron motion of both electrons and holes can be well
scribed in the effective-mass approximation.24 For the holes,
only the heavy-hole states are included, with the inters
band coupling partially taken into account through the re
istic dependence\vch(B), i.e., through the dependence
the effective in-plane~cyclotron! massmh* on B ~after Cole
et al.43!.

Using a composite indexi 5@nms# (s is the spin projec-
tion!, thee–h Hamiltonian can be written as

H5(
i ,a

cia
† cia« ia1 (

i jkl ,ab
cia

† cj b
† ckbclaVi jkl

ab , ~1!
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wherecia
† andcia create and annihilate particlea (e or h) in

statei, andVi jkl
ab are the Coulomb matrix elements.

At high-magnetic fields,w significantly exceedsl and it
is essential to properly include the effects due to the fin
QW width. Merely scaling all matrix elementsVi jkl

ab by a
constant factorj(w/l) is not enough. Ideally, theVi jkl

ab

should be calculated for the actual 3D electron and h
wave functions.24 The ‘‘rod’’ geometry used by Chapma
et al.23 might be a reasonable approximation~for the lowest
QW subband!, although using the same effective rod leng
for electrons and holes and its arbitrary scaling withB leads
to an incorrectB dependence of obtained results. In this p
per we insist on using numerically correct values ofVi jkl

ab and
calculate them in the following way. The actual density p
file across the QW can be approximated by%(z)
} cos2(pz/w* ), i.e., by replacing the actual QW by a wide
one, with an infinite potential step at the interface. This
fines the effective widths of electron and hole layers,we* and
wh* . For w;10 nm, we obtain w* [(we* 1wh* )/25w
12.5 nm. We have checked that the effective 2D interact
in a quasi-2D layer,

V~r !5E dzE dz8
%~z!%~z8!

Ar 21~z2z8!2
, ~2!

can be well approximated44 by Vd(r )51/Ar 21d2 if an ef-
fective separation across the QW is taken asd5w* /5. For a
given d/l, matrix elements ofVd(r ) have been calculate
analytically and used asVi jkl

ab in Eq. ~1!. A small difference
betweenwe* and wh* is included by additional rescaling
Vab(r )5jabV(r ), with jab

2 5^zeh
2 &/^zab

2 &. For w;10 nm,
we obtainjee50.94 andjhh51.08, and for wider QW’s, the
difference betweenwe* andwh* is even smaller. Note that ou
treatment of interactions in a quasi-2D layer is different fro
the ‘‘biplanar’’ geometry~electrons and holes confined
two parallel infinitely thin layers! tested by Chapmanet al.23

The HamiltonianH is diagonalized numerically in the ba
sis including up to five LL’s (n<4) for both electrons and
holes ~note that sincel 5S1n, the inter-LL excitations of
only one particle have nonzero angular momentum and,
do not contribute to theX ground state!. Energies obtained
for different values of 2S<20 are extrapolated to 2S→`,
i.e., to an infinite QW. The eigenstates are labeled by t
angular momentumL and its projectionLz , which are re-
lated to the good quantum numbers on the plane,M andK.
The total electron and hole spins (Je andJh) and projections
(Jze andJzh) are also resolved.

III. BOUND XÀ STATES

The 2e–1h energy spectra calculated for 2S520 and five
included electron and hole LL’s (n<4) are shown in Fig. 1.
The parameters used in the calculation (we* ,wh* , and the
dependence of\vch on B) correspond to the 11.5 nm GaA
QW. The energy is measured from the exciton energyEX , so
that for the bound states~the states below the lines! it is
opposite to the binding energyD ~the lowest LL energy is se
to zero!. Open and full symbols denote singlet and trip
electron-spin configurations, respectively, and only the s
e
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-

-

n

g.,

al

t
te

with the lowest Zeeman energy is marked for each trip
Similarly, each state withL.0 represents a degenerate mu
tiplet with uLzu<L. The angular momentumL calculated in
the spherical geometry translates into angular momenta
plane in such way40 that theL5S multiplets correspond to
the LL’s with L50 ~andM52K50,21,22, . . . ), and the
L5S21 multiplets correspond to the LL’s withL521
~andM52K21521,22, . . . ).

Due to the conservation ofL in the PL process, only state
from the L5S channel are radiative. This is because17,25,26

an annihilatede–h pair hasLX50, and the final-state elec
tron left in the lowest LL hasl e5S. Recombination of other
nonradiative (LÞS) states requires breaking rotational sym
metry, e.g., by interaction with electrons, other charged co
plexes, or impurities. This result is independent of chos
spherical geometry and, as shown by Dzyubenko,32 holds
also for the planar QW’s, where the 2D translational symm
try leads to the conservation of bothM and K, and the
corresponding PL selection rule isL50.

Three states marked in Figs. 1~a!–1~c! (B513, 30, and 68
T! are of particular importance.Xs

2 andXtb
2 , the lowest sin-

glet and triplet states atL5S, are the only strongly bound
radiative states, whileXtd

2 has by far the lowest energy of a
nonradiative (LÞS) states. The transition fromXs

2 to Xtd
2

ground state is found atB'30 T, which confirms the calcu
lation of WS.24 A new result is the identification of theXtb

2

state, which remains an excited radiative bound state in
frames in Figs. 1~a!–1~c!.

For comparison, the spectrum of an ideal, strictly 2D s
tem in the lowest LL is shown in Fig. 1~d!. The Xtd

2 is the
only bound state.20 As a result of the hidden symmetry,14–17

the only radiative states are the pair of ‘‘multiplicative
states atL5S and E5EX , in which an optically activeX
with LX50 is decoupled from a free electron withl e5S.

We have performed similar calculations for system

FIG. 1. The energy spectra~energyE vs angular momentumL)
of the 2e–1h system on a Haldane sphere with the Landau le
degeneracy of 2S11521. EX is the exciton energy. The param
eters are appropriate for the 11.5 nm GaAs quantum well.
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PRB 62 4633CHARGED EXCITONS IN A DILUTE TWO- . . .
larger than 2e–1h. The results confirm thatX andX2 are the
only strongly bounde–h complexes atB>10 T. For ex-
ample, the charge-neutral singlet biexcitonX2 ~with Je5Jh
5LX2

50) unbinds atB'20 T even in the absence of th
Zeeman splitting, and its Coulomb binding energy betwe
10 and 20 T is less than 0.1 meV.

To illustrate the finite size and surface curvature effe
on the results obtained in the spherical geometry, in Fig. 2~a!
we plot the Coulomb binding energies~without the Zeeman
energy! of all three X2 states marked in Fig. 1~b! (B
530 T) as a function ofS215(l/R)2. The very regular de-
pendence of the binding energies on the system size al
accurate extrapolation of the values obtained for 8<2S
<20 to 2S→`, i.e., to an extended planar system (l/R50
and infinite LL degeneracy!.

The effect of LL mixing is demonstrated in Fig. 2~b!,
where we plot the extrapolated binding energies (l/R50),
calculated including between two and five electron and h
LL’s, as a function ofB. The following observations can b
made. Although inclusion of one excited (n51) LL already
leads to a significantXs

2 binding, at least then52 level must
be added for the quantitatively meaningful results. Beca
the singlet state has more weight in the excited LL’s than
triplet states, the ground-state transition shifts to higheB
when more LL’s are included. TheXs

2 binding energyDs

weakly depends onB and saturates atB'20 T, while D td

}e2/l}AB. Finally, theXtb
2 energy goes at a roughly con

stant separation of 1.5 meV aboveXs
2 , and never crosse

eitherXs
2 or Xtd

2 .
To illustrate the dependence on the QW width, in Fi

3~a!, 3~c!, and 3~d! we compare theX2 binding energies
obtained forw510, 11.5, and 13 nm. The thick dotted line
for Xs

2 include the Zeeman energy needed to flip one e
tron’s spin and form a bound spin-unpolarized state in
initially spin-polarized electron gas. The Zeeman energyEZ
5g* mBB is roughly a linear function of energy through bo
cyclotron energy\vc}B and confinement energy}1/w2.
After Snelling et al.,45 for w;10 nm at B50, we have

FIG. 2. ~a! TheX2 energiesE calculated on a Haldane with th
LL degeneracy 2S11, plotted as a function ofS21, i.e., the sphere
radiusR. EX is the exciton energy andl is the magnetic length
Five electron and hole LL’s are included.~b! The X2 binding en-
ergiesE extrapolated tol/R50, plotted as a function of the mag
netic fieldB. Data obtained including different numbers of electr
and hole LL’s are shown; thicker lines are for five LL’s. The p
rameters in both frames are appropriate for the 11.5 nm GaAs q
tum well.
n

s

s

le

e
e

.

-
n

(ge* 10.29)w259.4 nm2, and after Secket al.,46 we find
dge* /dB50.0052 T21 ~for very high fields see also Ref. 47!.
In all frames,EZ changes sign atB;40 T, resulting in cusps
in the Xs

2 binding energy.
To explicitly show the magnitude ofEZ , with thin lines

we also plot theXs
2 energy withoutEZ . While the Ds in-

cluding EZ governs theXs
2 relaxation and dependence of th

Xs
2 PL intensity on temperature, theDs without EZ is the

difference between theX andXs
2 PL energies~neglecting the

difference5 betweengh* in the two complexes!. It is clear
from Figs. 3~a!, 3~c!, and 3~d! that EZ is almost negligible
for B,50 T and that the binding energies are similar for
three widths.

Since only threee–h complexes:X, Xs
2 , andXtb

2 , have
significant binding energy and at the same time belong to
radiativeL5S channel, only three peaks are observed in
PL spectra of dilute systems~not counting the Zeeman split
tings!. The total oscillator strengthtc

21 of a given statec can
be expressed as

tc
215^cuP †Puc&, ~3!

where

P †5(
i

~21!mcie
† cih

†

and

P5(
i

~21!mciecih

are the optical operators coherently creating and annihila
an e–h pair with L50 ~optically activeX). In Fig. 3~b!, we
plot t21 of X, Xs

2 , andXtb
2 as a function ofB for the 11.5 nm

n-

FIG. 3. TheX2 binding energiesE ~acd! and the photolumines-
cence intensitiest21 ~b! calculated for 10 nm~c!, 11.5 nm~ab!, and
13 nm GaAs quantum wells, plotted as a function of the magn
field B. EX is the exciton energy.
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QW. The units oft21 follow from Eq. ~3!. We assume here
that both electrons and holes are completely spin polar
(Jz5J). Typically, all electron spins and only a fraction o
hole spinsxh ~depending on temperature and the Zeem
energy! are aligned with the field. As a result, theXtb

2 PL has
definite circular polarization (s1) and its intensity is re-
duced byxh , while theXs

2 PL peak splits into as6 doublet
~separated by the appropriate Zeeman energy! with the inten-
sity of the two transitions weighted byxh and 12xh .

In a system obeying the hidden symmetry (we* 5wh* , no
LL mixing, and no QW subband mixing!, the total oscillator
strength of oneX is equally shared by a pair of multiplicativ
e–X states. In Fig. 3~b!, it is distributed over a number o
radiative (L5S) states, and, although most is inherited
the two nearly multiplicative states atE'EX , a fraction also
goes to the strongly boundXs

2 andXtb
2 states, with the ratio

t tb
21'2ts

21 almost independent ofB. The resulting three PL
peaks (X, Xs

2 , andXtb
2) are precisely the ones observed

experiments.3–7

The actual relative intensity of the PL peaks will depe
not only on the oscillator strengths but also on the relat
population of the respective initial states~i.e., efficiency of
the relaxation processes, which in turn depends on the e
tation energies and temperature! and their spin polarization
An increase ofxh from 1

2 to 1 with increasingB can explain
an increase of theXtb

2 PL intensity by up to a factor of 2
while theXs

2 PL intensity remains roughly constant.7

Let us stress that the results presented in Figs. 1–3
appropriate for narrow and symmetrically doped QW’s.
much wider QW’s (w;30 nm), the subband mixing be
comes significant24 ~and favors theXs

2 ground state!, while
in strongly asymmetric QW’s or heterojunctions the Co
lomb matrix elementsVi jkl

ab are quite different. In the latte
case, the significant difference between electron and h
QW confinements alters thee–h attraction compared to th
e–e repulsion within anX2. Roughly, the binding energie
of all threeX2 states change~compared to the values calcu
lated here! by an uncompensatede–h or e–e interaction that
scales ase2/l}AB. This might explain the origin of an
~equal! increase ofDs and D tb as a function ofB found in
Ref. 7.

While a quantitative model adequate to asymmetric QW
or heterojunctions must use correct~sample-dependent! elec-
tron and hole charge density profiles%(z), our most impor-
tant result remains valid for all structures: The tripletX2

state seen in PL is the ‘‘bright’’ excited triplet state atL
5S (L50), while the lowest triplet state atL5S21 (L
521) so far remains undetected.

It might be useful to realize which of the experimenta
controlled factors generally shift the singlet-tripletX2 tran-
sition to lower magnetic fields. The hidden symmetry, wh
in Fig. 1~d! prevents binding of any other states thanXtd

2 is
the exact overlap of electron and hole orbitals.14–17 The ex-
perimentally observed binding ofXs

2 is due to the confine-
ment of the hole charge in a smaller volume~through asym-
metric LL mixing, \vce.\vch , and asymmetric QW
confinement,we* .wh* !, which enhances thee–h attraction
compared to thee–e repulsion. Therefore, any factor
should be avoided that break thee–h orbital symmetry, such
d

n

e

ci-

re

-

le

s

as ~i! largew leading to the QW subband mixing,~ii ! well/
barrier material combinations yieldingwh* !wh* , ~iii ! large
in-plane effective masses, and small dielectric consta
~large @e2/el#/@\vc#) leading to the strong LL mixing. On
the other hand, reducingw strengthens Coulomb interactio
and thus LL mixing, while too weak interactions~scaled e.g.,
by e) might decreaseX2 binding energies below the exper
mental resolution. The giant electron Zeeman splitting (ge*
;1) in CdTe or ZnSe structures10,11 might certainly help to
stabilize theXtd

2 ground state at lowB. Also, appropriate
asymmetric doping producing an electric field across the Q
and slightly separating electron and hole layers can help
restore balance between thee–e ande–h interactions.

To complete the discussion ofX2 states, let us note tha
the binding energies reported here forw510 nm are consid-
erably larger than those obtained recently by WS.24 We be-
lieve that our calculation describes better the in-plane co
lations for two major reasons:~i! WS used the value ofmh*
50.18 for the effective cyclotron mass of the hole, which
appropriate only forB50. The actual value at higher field
is about twice as large; forw;10 nm, the cyclotron split-
tings of Coleet al.43 yield mh* 50.28, 0.37, and 0.40 atB
510, 30, and 50 T, respectively.~ii ! In their numerical di-
agonalization on a plane, WS resolved only one of the t
good orbital quantum numbers (M but not K). A small
number of basis states used in their calculation lifted theX2

LL degeneracies and hid the underlying symmetry.32,39 In
contrast, in our calculation we resolved both good orb
quantum numbers, diagonalized exactly much larger Ham
tonians, and, due to the their regular dependence on the
tem size, we were able to extrapolate our binding energie
the limit of an infinite system~although we cannot estimat
the accuracy of this procedure, the extrapolated energies
certainly much more accurate than the finite-size approxim
tions!. Also, because they could calculate fairly accurat
only the lowest energy at eachM, WS did not recognize the
bright triplet stateXtb

2 ~which is the lowest triplet state a
M50 and the first excited one atM<21).

On the other hand, WS accounted for the correlatio
across the QW by including higher QW subbands in th
calculation. In narrow QW’s discussed here (w;10 nm), the
effect of higher subbands is small and one can expect a s
lar ~small! reduction of ourX2 binding energies in Fig. 3 as
obtained in Fig. 1 of Ref. 24.

IV. EFFECTS OF XÀ INTERACTIONS

Even in dilute systems, recombination of bounde–h
complexes can in principle be affected by their interact
with one another or with excess electrons. The short-ra
part of thee–X2 andX2 –X2 interaction potentials is weak
ened due to theX2 charge polarization,25,26and it is not at all
obvious if even in the narrow QW’s the resultinge–X2 and
X2 –X2 correlations will be similar to the Laughlin33 corre-
lations in an electron gas. Instead, the long-range part of
effective potentials could lead to some kind ofe–X2 or
X2 –X2 pairing~in analogy to the electron or composite Fe
mion pairing48 in the fractionally filled excited LL’s!. It has
been shown42 that the repulsion has short range and results
Laughlin correlations, if its pseudopotentialV(L), defined48
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as the pair interaction energyV as a function of the pair
angular momentumL ~on a sphere, largerL means smaller
separation! increases more quickly thanL(L11). Therefore,
the correlations in an infinite system~QW! are determined by
the form of the relevant pseudopotentials that can be
tained from studies of relatively small systems.

In Fig. 4 we plot the energy spectra of an 3e–1h system
~the simplest system in which anX2 interacts with another
charge!, calculated for 2S520 and three electron and ho
LL’s included (n<2). The open and filled circles mark th
states with total electron spinsJe5 1

2 and 3
2 , respectively, and

only the lowest-energy states are shown for each spin m
tiplet. In the low-energy states, boundX2 complexes interac
with an electron through the effective pseudopotent
V(L), and the total energy of an interacting pair is the sum
V(L) andEX2. For each pair, the allowedL are obtained by
adding l e5S of an electron andLX2 of an appropriateX2.
This yieldsL>0 for Xs

2 andXtb
2 , andL>1 for Xtd

2 . How-
ever, maximumL are smaller thanLX21S due to the finite
size of theX2 ~hard core!.25,26 The allowed total electron
spinsJe are obtained by adding12 of an electron to 0 or 1 of
an X2, so that thee–Xs

2 pair states haveJe5 1
2 , while the

e–Xtb
2 ande–Xtd

2 pair states can have eitherJe5 1
2 or 3

2 .
At low L ~i.e., at lowe–X2 interaction energy compare

to theX2 binding energy!, thee–X2 scattering is decoupled
from internalX2 dynamics, and alle–X2 pseudopotentials
marked with lines in Fig. 4 are rather well approximated
those of two distinguishable point charges~electrons! with
appropriatel ’s. Their relative position in differente–X2

bands depends on involvedD andEZ , and thee–Xtd
2 states

form the lowest-energy band at sufficiently largeB; see Fig.
4~c!. Such regular behavior of the~two-charge! 3e–1h sys-
tem implies25,26 that the lowest states of an infinitee–h
plasma are formed by boundX2’s interacting with one an-

FIG. 4. The energy spectra~energyE vs angular momentumL)
of the 3e–1h system on a Haldane sphere with the Landau le
degeneracy of 2S11521. EX is the exciton energy. The param
eters in frames~abc! are appropriate for the 11.5 nm GaAs quantu
well. In frame~d!, l is the magnetic length.
b-

l-

s
f

other and with excess electrons through the Coulomb-
pseudopotentials. Depending onB, eitherXs

2’s or Xtd
2 ’s form

the ground state, while other bound complexes occur
higher energies, with the excitation gap given by the app
priate difference inD andEZ .

Less obviously, because of the short-range42 character of
V(L), the low-lying states have Laughlin-Halperin33,34

e–X2 correlations described by a Jastrow prefactor)(xi
2yj )

m, wherex andy are complex coordinates of electron
andX2’s, respectively, andm is an integer. At fractional LL
fillings n5ne2nh , X2’s avoid42 as much as possible th
e–X2 pair states with the largest values ofL. At n51/m, the
ground state is the Laughlin-like incompressible fluid st
with L<LX21S2m, with quasiparticlelike excitations de
scribed by a generalized composite Fermion model.25,26Even
though formation of an equilibriumX2 Laughlin state re-
quires longX2 lifetime and hence is only likely forXtb

2 , all
X2’s will stay as far as possible from other charges, and
distance to the nearest one corresponds to theL5LX21S
2m pair state. This result depends on our assumption of
small QW widthw. Heet al.44 showed that the Laughline–e
correlations are destroyed in a thick GaAs QW whenw/l
.6. At B540 T, this corresponds tow.24 nm, but the
critical width for thee–X2 correlations will be even smalle
because of the above-mentionedX2 charge polarization.25,26

The connection betweenn and the minimum allowed
e–X2 separation~or L) allows calculation of the effect o
thee–X2 interaction on theX2 recombination as a function
of n. In Fig. 5 we plot the PL oscillator strengtht21 and
energyE ~measured from the exciton energyEX) for some of
the 3e–1h states marked in Figs. 4~a!–4~c!. We assume tha
the Zeeman energy will polarize all electron spins prior
recombination, except for those two in theXs

2 , and concen-
trate on the following three initial configurations:e–Xs

2 with
Jze5Je5 1

2 ande–Xtb
2 ande–Xtd

2 with Jze5Je5 3
2 . For each

of the three configurations,t21 andE are plotted as a func
tion of L ~i.e., of n).

The quantities conserved in an emission process are
total angular momentumL and its projectionLz ~on a plane,
M and K), and the total electron and hole spins and th
projections change by6 1

2 . For Xtb
2 andXtd

2 , only ane↑–h↓
pair can be annihilated, and an emitted photon has a defi
circular polarizations1 . Two indistinguishable electron
left in the final state have the total spinJe51, so their pair
angular momentumL must be odd (2l e minus an odd inte-
ger!. For Xs

2 , both s1 and s2 PL are possible, with the
energy of the latter transition shifted by the total electron a
hole Zeeman energy. Fors1 , the two electrons in the fina
state can have eitherJe50 andL even, orJe51 andL odd;
while for s1 they can only haveJe51 andL must be odd.
Note thatge* changes sign atB'42 T, and the polarizations
in Fig. 5~e! are reversed. As expected, forL→0 the oscilla-
tor strengths converge to those of appropriate singleX2’s in
Fig. 3~b! ~multiplied by two if only one parity ofL is al-
lowed!. On the right-hand side of Fig. 5, thes1 PL energies
are shown. For only partial polarization of hole spins,
unmarkeds2 peak of anXs

2 will appear at the energy highe
by theX2 ~not electron! Zeeman splitting.5

There is no significant effect of thee–X2 interactions on
the X2 oscillator strength and energy at smallL. Moreover,

l
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the decrease of the PL energy of anXs
2 at largerL is due to

its induced charge polarization~dipole moment!.25,26This ef-
fect is greatly reduced for anX2 surrounded by an isotropi
electron gas, although slight residual variation of the PL
ergy atn; 1

3 might broaden theXs
2 peak. The insensitivity of

FIG. 5. The photoluminescence intensitiest21 ~left! and ener-
gies E ~right! of an X2 interacting with an electron on a Haldan
sphere with the Landau level degeneracy of 2S11521, plotted as
a function of thee–X2 pair angular momentumL. EX is the exciton
energy. The parameters are appropriate for the 11.5 nm GaAs q
tum well.
i-
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et
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M
ys
-

the X2 recombination to thee–X2 interactions at smallL
justifies a simple picture of PL in dilutee–h plasmas. In this
picture, recombination occurs from a single isolated bou
complex and hence is virtually insensitive6 to n. Somewhat
surprisingly, the LH correlations prevent increase of theXtd

2

oscillator strength through interaction with other charg
t td

21 decreases very quickly with decreasingn ~see plots on
the logarithmic scale in the insets!, and remains ten times
longer thants even atn5 1

3 . This explains the absence of a
Xtd

2 peak even in the PL spectra3–7 showing strong recombi-
nation of a higher-energy triplet stateXtb

2 ~however, see also
Ref. 36!.

V. CONCLUSION

We have studied PL from a dilute 2D electron gas
narrow and symmetric quantum wells~QW’s! as a function
of the magnetic fieldB and the QW width. The puzzling
qualitative discrepancy between experiments and ea
theories is resolved by identifying the radiative (Xtb

2) and
nonradiative (Xtd

2) bound states of a triplet charged excito
Even in high-magnetic fields, when it has lower energy th
the radiative states, theXtd

2 remains invisible in PL experi-
ments due to its negligible oscillator strength. The sh
range of thee–X2 interaction pseudopotentials results in t
Laughlin-Halperin correlations in a dilutee–h plasma, and
effectively isolates the boundX2 states from the remaining
electrons. This explains the observed insensitivity of the
spectra to the filling factor and persistence of the smallXtd

2

oscillator strength in an interacting system. An idea of t
Laughlin incompressible-fluid states of long-livedXtd

2 ’s is
supported. The ‘‘dark’’Xtd

2 state could be identified either i
time-resolved PL or transport experiments.
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