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We study a class of ansatz wave functions in which composite fermions form two correlated

‘‘partitions.’’ These ‘‘bipartite’’ composite fermion states are demonstrated to be very accurate for

electrons in a strong magnetic field interacting via a short-range 3-body interaction potential over a

broad range of filling factors. Furthermore, this approach gives accurate approximations for the exact

Coulomb ground state at 2þ 3=5 and 2þ 4=7 and is thus a promising candidate for the observed

fractional quantum Hall states at the hole conjugate fractions at 2þ 2=5 and 2þ 3=7.
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While the fractional quantum Hall effect (FQHE) [1] in
the lowest Landau level (LL) is securely explained by the
composite fermion (CF) theory [2], the physics of the more
delicate FQHE in the second LL is currently under debate.
The observation [3] of the FQHE at 5=2 has motivated the
idea of pairing of composite fermions, represented by the
Pfaffian wave function of Moore and Read [4–7]. Several
generalizations of this idea have been proposed [8–11]. We
construct below ‘‘bipartite’’ CF (BCF) wave functions at
arbitrary fillings by analogy to an earlier theory of CF
states in bilayer systems [12] and compare them to exact
eigenstates of the Coulomb interaction as well as of a
short-range 3-body interaction for which the Pfaffian state
is exact at half filling. For the latter, the BCF wave func-
tions are shown to be very accurate over a broad range of
filling factors, in particular, for the neutral excitations and
quasiparticles of the Pfaffian state, as well as for incom-
pressible FQHE states. The BCF wave functions also
provide a good representation of the second-LL Coulomb
states at 2þ 3=5 and 2þ 4=7. (Evidence has been
seen [13] for the FQHE at the particle-hole conjugate states
2þ 2=5 and 2þ 3=7.) Aside from the fundamental intrin-
sic interest in their physical origin, the former state has
attracted attention because of a proposal [8] which pro-
duces non-Abelian braid statistics for its quasiparticles that
is sufficiently complex as to enable, in principle, universal
quantum computation.

Our starting point is the observation that, following an
identity due to Cauchy, the Pfaffian wave function [4] can
be expressed as [5]

�Pf
1=2 ¼ A

YN=2

j<k

ðzj � zkÞ3
YN=2

j<k

ðwj � wkÞ3
YN=2

j;k¼1

ðzj � wkÞ;

where the particles are partitioned into halves, labeled by
zj ¼ xj þ iyj and wk ¼ xk þ iyk, andA denotes the anti-

symmetrization operator over all N coordinates. (We sup-
press the ubiquitous Gaussian factor for ease of notation.)

In other words, the Pfaffian wave function is obtained by
fully antisymmetrizing the spatial part of Halperin’s 331
bilayer wave function [14]. A more general class of bilayer
CF wave functions was constructed by Scarola and Jain
[12], and the trial wave functions considered here are
constructed by fully antisymmetrizing the spatial part of
the generalized bilayer CF wave functions. Explicitly, the
BCF wave functions are given by

�BCF
� ¼ A�CF

�� ðfzjgÞ�CF
�� ðfwjgÞ

YN=2

j;k¼1

ðwj � zkÞ: (1)

Prior to antisymmetrization, the wave function has two
partitions fzjg and fwjg, with different correlations

within and across partitions. The factor �CF
�� ðfzkgÞ ¼

P LLL

QN=2
j<kðzj � zkÞ2p��� is Jain’s CF wave function,

where ��� is the wave function of N=2 noninteracting
electrons at ��, P LLL is the lowest LL (LLL) projection
operator, and �� ¼ ��=ð2p�� þ 1Þ. Composite fermions in
different partitions are correlated through the last factor.
Power counting tells us that, in the thermodynamic limit,
the overall filling fraction � is related to the CF filling
fraction �� by

� ¼ 2 ��

��þ 1
¼ 2��

ð2pþ 1Þ�� þ 1
: (2)

When �� ¼ n is an integer, an incompressible BCF state is
obtained at � ¼ 2n=½ð2pþ 1Þnþ 1�. The wave functions
for its ground state, neutral excitations, quasiparticles, and
quasiholes can be constructed from the corresponding
known wave functions of the integral quantum Hall state
at �� ¼ n. For the special case of �� ¼ 1, Eq. (1) repro-
duces the familiar 1=2p Pfaffian ground state.
The BCF wave functions describe complex interactions

between composite fermions. Their form suggests pairing
correlations, because electrons in the bulk can be added
only in pairs (one in each partition), and quasiholes or
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quasiparticles can also be created only in pairs.
A posteriori evidence for the paired nature of �BCF comes
from our numerical results below, which demonstrate
that they are accurate approximations of the solutions of
a 3-body model interaction which has no barrier to forming
pairs but a pair repels the approach of a third particle.

Wave functions for incompressible states of the same
form as that in Eq. (1) have previously been motivated by
Milovanović and Jolicoeur [10] and Hermanns [11]. The
former considers analogs where the composite fermions in
each partition experience a negative flux, and the latter
employs a conformal field theory prescription for adding
composite fermions in higher � levels (i.e., Landau-like
levels of composite fermions).

All calculations in this Letter are performed in the stan-
dard spherical geometry in which the N electrons move on
the surface of the sphere under the influence of a radial
magnetic field. The total flux through this spherical surface
is 2Qhc=e, where 2Q is an integer due to the Dirac quan-
tization condition. N is taken to be an even integer. The
wave functions of Eq. (1) can be translated into the spherical
geometry by using standard methods. For Coulomb interac-
tion we consider N electrons in the second LL; treating the
lowest LL as inert, this system is formally mapped into N
electrons in the LLL with an effective interaction. LL
mixing and finite thickness corrections may be substantial
under experimental conditions [15,16], but we neglect them
in the present study. The composite fermions in individual

partitions experience an effective flux of 2Q� ¼ 2Qþ 2�
ð2pþ1Þ

2 N. The state at � ¼ n=½ð2pþ 1Þn� 1� occurs at

2Q ¼ N=�� ðnþ 2pÞ. The structure of the BCF states is
shown schematically in Fig. 1.

The local charge of the quasiparticles, which is the
excess charge associated with an isolated quasiparticle,
can be determined by asking how many quasiparticles
are generated upon the addition of two electrons. This
produces a local charge of ½ð2pþ 1Þnþ 1��1 (in units of
the electron charge) for the quasiparticles of the BCF state
at � ¼ 2n=½ð2pþ 1Þnþ 1�. In particular, the local charges
of the quasiparticles at 1=2, 4=7, and 3=5 are 1=4, 1=7, and
1=10, respectively.

We have carried out an extensive comparison of the BCF
wave functions with the exact eigenstates of a 3-body and
the second-LL Coulomb interactions, and we now present
the results for the largest systems that we have been able to

study. The 3-body interaction [5,6] is given by Ĥ3-body ¼P
i<j<kP

ð3Þ
ijkð3Q� 3Þ, where Pð3Þ

ijkðLÞ projects the state of

the three particles (i, j, and k) into the subspace of total
orbital angular momentum L. The BCF wave functions are
very complex because of the need for lowest LL projection
as well as antisymmetrization, which makes their
Monte Carlo evaluation impractical. Fortunately, it is
possible to calculate the overlaps and energies of the
BCF wave functions exactly if we have the complete set

of 3-body or Coulomb eigenstates and eigenenergies.
Completeness implies that each BCF state c can be ex-
pressed as a linear superposition of the exact eigenstates in
the appropriate L sector: c ¼ P

ncnjni. The coefficients
of superposition cn can be determined by generating a
set of linear equations for them by evaluating the wave
function for sufficiently many particle configurations fzjg.
Once expressed explicitly in terms of the interaction
eigenstates, the energies and overlaps can be evaluated
straightforwardly.
Figure 2 shows the comparison of BCF wave functions

for neutral excitations as well as for two and four
quasiparticles at � ¼ 1=2 with the exact eigenstates of
the 3-body interaction. Both the energies and overlaps
show good agreement for the low energy states, which
correspond to states with far-separated (to the extent pos-
sible in our finite systems) quasiparticles and quasiholes.
(We note that for neutral excitations the separation be-
tween the quasiparticle and the quasihole increases with
L, whereas for two charged excitations the largest separa-
tion is obtained at the smallest L. The situation is more
complex when many quasiparticles or quasiholes are
present.) Remarkably, the neutral excitation branch is
very nicely reproduced beyond a few initial L values.
The comparison of the BCF states with the second-LL
Coulomb eigenstates at � ¼ 5=2, also shown in Fig. 2, is
less satisfactory. We cannot rule out that the quasiparticles
of 3-body and Coulomb interaction are adiabatically con-
nected, although a demonstration of that might require
larger system sizes than available here.
The dimension of the Hilbert space spanned by 2n

quasiparticles or quasiholes of the Pfaffian is of interest.

FIG. 1 (color online). Schematic depiction of the incompress-
ible state and excitations at 4

7 with 2Q� ¼ 1. In each panel, the

two blocks indicate two partitions, each at filling factor �� ¼ 2.
Each circle denotes a single particle orbital, and composite
fermions occupying them are shown as solid dots with arrows
attached to them. The horizontal lines are the � levels with the
states in each � level arranged in the order of increasing Lz.
(a) Incompressible state. (b) One neutral excitation. (c) Two
quasiholes. (d) Two quasiparticles.
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Our approach suggests the following counting. For quasi-
particles (quasiholes) there are n CFs in the second� level
(n holes in the lowest � level) in each partition. These
can be arranged in the N�2n

2 þ 2 single particle orbitals

[ðN þ 2nÞ=2 orbitals] in

gn-qp ¼
� N�2n

2 þ 2
n

�
; gn-qh ¼

� Nþ2n
2

n

�
(3)

distinct ways. Considering both partitions, we get a total of
1
2 gðgþ 1Þ states. On the quasihole side, it is found that

these are not all linearly independent, and the dimension of
the Hilbert space spanned by them is smaller than the

above number. The space of quasihole states in the BCF
formalism can in fact be shown to be identical to the ones
studied previously [6,17]. The linear dependences in BCF
quasiholes are therefore analogous to those demonstrated
by Nayak and Wilczek [17] in the fixed quasihole position
basis and have relevance to the braid statistics of the quasi-
holes. If quasihole states were all independent, that would
produce ð2nÞ!=2ðn!Þ2 distinct states (as opposed to the
actual 2n�1) for 2n quasiholes at fixed locations, as can
be obtained, by following Ref. [8], by dividing the full
degeneracy by the ‘‘Abelian positional degeneracy’’
ðN=2þ 2nÞ!=ðN=2Þ!ð2nÞ! and taking the thermodynamic
limit N ! 1. For quasiparticles, in contrast, we find that
all wave functions constructed above are linearly indepen-
dent for all 2n values that we have tested [18], raising
the possibility that quasiparticles have different braiding
properties than quasiholes. A possible resolution of this
discrepancy is that, although linearly independent, some of
the basis states are pushed up to a high energy, and the
structure of the low energy subspace is consistent with that
of quasiholes. We do not see evidence for the emergence of
a low energy band in our numerical results but cannot rule
out such a possibility for larger systems.
Other wave functions have been constructed for the

quasiparticles of the Pfaffian state. Hansson et al. [19]
have proposed a wave function that is, in spirit, similar to
BCF wave functions. They use a conformal field theory
prescription for constructing a CF quasiparticle for 1=3
[20] and apply it to the Pfaffian wave function in its
antisymmetrized bilayer form. Their wave functions are
presumably not identical to BCF, however, as indicated by
the fact that they obtain the same counting of states for
quasiparticles as for quasiholes. Bernevig and Haldane
[21] have used certain clustering properties to propose
a wave function for quasiparticles of the 5=2 state. For
� ¼ 1=3, their prescription produces a wave function iden-
tical to Jain’s wave function for a single quasiparticle but
not for two or more quasiparticles, indicating that the BCF
wave functions are in general different from theirs as well.
We next come to the incompressible FQHE states at

� ¼ 2n=ð3nþ 1Þ. We consider the fractions 4=7 and 3=5,
related to states with two and three filled � levels, respec-
tively, in each partition, which correspond to total flux
2Q ¼ 7N=4� 4 and 2Q ¼ 5N=3� 5, respectively. As a
first nontrivial test, the exact ground states are uniform,
L ¼ 0 states at these flux values for all cases we are able to
test. Figure 3 displays a comparison of our wave functions
with the exact eigenstates for the ground state as well as
neutral and charged excitations. For the 3-body interaction,
the BCF wave functions have a high overlap with the
ground state and the low energy excitations. The results
are significant given the fairly large dimensions of the
Hilbert space (Fig. 3), demonstrating that the BCF wave
functions continue to nicely match the solutions of the
3-body interaction even away from 1=2.

FIG. 2 (color online). Comparison of exact states and the trial
functions at � ¼ 1=2 for the 3-body interaction (left panels) and
at � ¼ 5=2 for the Coulomb interaction (right panels). The blue
dots show the exact eigenvalues of the Hamiltonian, and the
black lines show the expectation value of energy per particle for
the BCF trial wave functions. (When there are several BCF states
at a given L, we diagonalize the interaction in that basis.) Here
and in the next figure, the number at the bottom indicates the
overlap of the lowest energy BCF wave function with the exact
lowest energy eigenstate in each L sector, and the integer at the
top is the dimension of the L sector. The Coulomb energies per

particle are quoted in units of e2=l, where l ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
@c=eB

p
is the

magnetic length, and include the interaction with the positively
charged background. Top panels: Incompressible state and neu-
tral excitations at 2Q ¼ 2N � 3; middle: two quasiparticles at
2Q ¼ 2N � 2; bottom: four quasiparticles at 2Q ¼ 2N � 1.
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The BCF wave functions also provide a good description
of the second-LL Coulomb solutions. Especially notable is
the comparison for the 2þ 3=5 FQHE, where the BCF
ground state has an overlap of 98.6% with the exact
Coulomb ground state for 18 particles, and its energy
(per particle) �0:439 79e2=l deviates by 0.04% from the
exact Coulomb energy �0:439 97e2=l. The wave function
of Read and Rezayi [8], which occurs at 2Q¼ð5=3ÞN�3,

has overlaps of 0.98 and 0.94 for N ¼ 15 and 18 particles,
respectively. If we assume particle-hole symmetry, which
is exact in the absence of LL mixing, all these
results carry over to the hole conjugate state at 2þ 2=5.
Another generalization of the Pfaffian state has been con-
structed by Bonderson and Slingerland [9] by multiplyingQ

j<kðzj � zkÞ2p�1P LLL

Q
j<kðzj � zkÞ2�n, the CF wave

functions for bosons [22] at � ¼ n=½ð2pþ 1Þn� 1�,
by the Pfaffian factor. (The � sign refers to negative
flux attachment [23].) This produces a 2=5 state at 2Q ¼
ð5=2ÞN þ 2 which has an overlap of 0.91 with the N ¼ 14
ground state [9]. These three states (as well as the standard
CF state) occur at different shifts and thus are topologically
distinct. Only one of these, if any, may be valid for the
actual Coulomb state at 2þ 2=5, and further investigation,
e.g., a comparison of excitations, will be needed to dis-
criminate between them.
Generalization of Eq. (1) to an mth order interpartition

zero, which amounts to replacing the cross factor in
Eq. (2) by

Q
j;kðzj � wkÞm, will produce BCF states at

2��=½ð2pþmÞ�� � 1�. Multipartite analogs of Eq. (1)
can also be straightforwardly constructed and will repre-
sent CF multiplet formation. Turning on the longer range
part of the 3-body interaction has been shown to break the
pairs to produce free composite fermions [24].
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