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1. Introduction

Since the discovery of the quantum Hall effect (QHE)
in 1980 [1], topological states of matter have been ex-
tensively investigated [2, 3]. A full family of quantum
Hall like states was recently discovered experimentally,
including quantum spin Hall effect (QSHE) and quan-
tum anomalous Hall effect (QAHE) [4–6].

QHE-like states are examples of topologically non-
trivial phases, distinguished from trivial ones by a topo-
logical invariant. They are characterized by insulating
bulk and edge states that are responsible for the trans-
port along the edges.

In most cases the knowledge of all expectation values
of operators in the ground state is enough to classify the
state of matter. However, it is not true of the “topo-
logical phases”, for which more sophisticated measures
are needed to distinguish between distinct topological
classes. Topological properties of a system can be found
using entanglement measures [7]. One of the advantages
of entanglement is that it can reveal non-local correla-
tions in the system, which sometimes cannot be obtained
from its band structure.

In this work, by using entanglement spectra, we ana-
lyze the existence of QSHE and QAHE for a lattice model
with non-trivial topology of energy bands. We consider
decorated square lattice (called the Lieb lattice) [8]. Fol-
lowing Zhao and Shen [9], the Chern number of the
energy bands depends on the relative strength of the
complex hopping constant [10] and the staggered poten-
tial amplitude. We analyze the energy and entangle-
ment spectra of the system in strip geometry for vari-
ous strengths of the staggered potential. We identify the
topologically trivial and non-trivial phases, obtaining the
regimes of parameters for which QSHE and QAHE states
are possible.

2. Methodology

2.1. Model

The decorated lattice is a two-dimensional square lat-
tice, with an additional atom between each pair of nearest
neighbors, as shown in Fig. 1a. The lattice can be divided
into two sublattices A and B, distinguished by filled and
empty circles. In the tight-binding approach we include
the nearest neighbor hopping term, with amplitude t, and
the spin–orbit coupling term, with amplitude λ,

H = t
∑
〈ij〉σ

c†iσcjσ + iλ
∑
〈〈ij〉〉αβ

vijc
†
iασ

z
αβcjβ , (1)

where vij = ±1 depending on the chirality of the jump,
σz is the Pauli matrix and ciα is the annihilation operator
for a particle with spin α at the site i.

The unit cell consists of three sites giving three energy
bands. In the nearest neighbor approximation, when only
the first term of Eq. (1) is considered, the band structure
consists of two dispersive bands touching each other at
energy E = 0, where a totally flat third energy band
is present [8, 11]. Inclusion of the second term opens
the energy gap between the two dispersive bands, addi-
tionally making them topologically non-trivial with the
Chern numbers C = ±1 (C = ∓1) for spin-up (spin-
down) bands, depending on the choice of the phase sign.
A nondispersive zero-energy band remains topologically
trivial with the Chern number C = 0.

To allow manipulation of the Chern numbers of the
bands, the staggered potential terms are introduced to
the Hamiltonian. As was shown by Zhao and Shen [9],
variation of the strength of the potential closes the en-
ergy gap and re-opens it, swapping the Chern numbers of
the energy bands at their crossing point. The staggered
potential depends on the sublattice (A or B) and consists
of the spin-dependent part

Hs = −vs
∑
i∈A

c†iσ
zci + vs

∑
i∈B

c†iσ
zci, (2)
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and the spin-independent part

Hc = −vc
∑
i∈A

c†i ci + vc
∑
i∈B

c†i ci, (3)

where vs and vc are strengths of spin-dependent and spin-
independent parts, respectively. We may introduce vari-
ables S± such that

S± = vs ± vc. (4)
These parameters are more convenient since S+(S−) only
enters the spin up (down) part of the Hamiltonian and
therefore we can treat them separately.

60 cells

A B

Fig. 1. The investigated system. The square box con-
tains the unit cell. The system is a strip 60 cells wide
and infinitely long, modeled by periodic boundary con-
ditions. The red dotted line shows how the system is
divided into parts A and B. The solid color lines denote
the nearest neighbor hopping and the dashed color lines
denote spin-orbit interaction. The sublattices A and B
are marked by black (filled) and white (empty) dots,
respectively.

In our calculations, we are dealing with an infinite strip
of 60 unit cells width. The regions A and B are the left
and right sides of the strip and their widths are equal, as
pictured in Fig. 1a. In this system, ky is a good quantum
number and we Fourier transform the Hamiltonian in the
y direction.

2.2. Entanglement spectrum

We consider a system in the many-body ground state
|ΨGS〉, which is given by a Slater determinant of the
single-particle states of all the states below the Fermi
level. The density matrix of the whole system in this
state is ρ = |ΨGS〉〈ΨGS|. Each density matrix corre-
sponds to some Hamiltonian, via the thermodynamical
relation

ρ = N exp(−βH), (5)
where β = 1

kBT
is the Boltzmann factor and N is a nor-

malization factor. The system can be divided into two
parts, A and B, as shown in Fig. 1a. We can define the
reduced density matrix of the subregion A as ρA = TrBρ.
We are interested in the entanglement between those two
parts. We define the entanglement Hamiltonian as the
Hamiltonian corresponding to ρA in unit temperature.

The set of eigenvalues of this Hamiltonian is called the
entanglement energies and denoted by {ξi}.

The entanglement energies are related to the eigenval-
ues {ζi} of the reduced correlation matrix [12]:

Cij = 〈ΨGS| c†i cj |ΨGS〉 , i, j ∈ [1, N/2] (6)
by the formula

ζi =
1

eξi + 1
. (7)

These eigenvalues are called the single particle entangle-
ment spectrum. A system in a topologically non-trivial
phase cannot be continuously transformed to a system
with zero entanglement without closing the energy gap.
This situation holds if and only if the entanglement spec-
trum is gapless.

Another measure that can be obtained from the single-
particle entanglement spectrum is the trace index [7] de-
fined as:

Tr (C(k)) =

N/2∑
i=1

〈ΨGS| ci(k)†ci(k) |ΨGS〉 . (8)

If this measure has a discontinuity for some k then the
Chern number is equal to the difference of the right and
left limits at this point. Otherwise, the Chern number
C = 0.

3. Results

In this section, we show that various quantum phases
can be distinguished. In Fig. 2b we deal with spin up
electrons for S+ > 2λ. The fillings are ν = 1/3 (top row)
and ν = 2/3 (bottom row) corresponding to fully filled
lower band and fully filled two lower bands, respectively.
The energy band structure is shown in the first column
from the left. A characteristic feature is a presence of
edge states between the middle and the upper band.
In the second column the single-particle entanglement
spectrum {ζi} is shown. For the filling factor ν = 1/3
(top row), the spectrum is gapped which means that
the lower band is topologically trivial. For the filling
factor ν = 2/3 (bottom row), the spectrum is gapless
which means that the lower and middle bands together
are topologically non-trivial [7]. The third column shows
the entanglement energies {ξi} which are related to the
entanglement spectrum by the formula ξi = ln (1− 1/ζi).
The third column contains the same information as the
second one but allows one to have closer insight into
the inner structure of the entanglement energy bands.
The fourth column pictures the trace index. For the fill-
ing factor ν = 1/3 there are no discontinuities which
means the Chern number of the lower band is zero.
For the filling factor ν = 2/3 there is a discontinuity.
The right limit at this point is equal 59.5 and the left
is 60.5, therefore the Chern number for the lower and
middle bands together is C = 59.5 − 60.5 = −1. Since
the Chern number of the bottom band was C = 0, we
know that the middle band Chern number has to be equal
C = −1. Since the Chern number of the whole system
must be 0, the Chern number of the upper band is C = 1.
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Fig. 2. Results for (a,b) spin up and (c,d) spin down
with (a,c) S± < 2λ and (b,d) S± > 2λ for filling 1/3
(top row) and 2/3 (bottom row). The first column from
the left shows the energy spectrum, with the horizon-
tal green line indicating the Fermi level. The second
and third columns from the left present the entangle-
ment spectrum and entanglement energies. The fourth
column shows the trace index. The Chern numbers
are (a) −1 for both fillings, (b) 0 and −1 for fillings
1/3 and 2/3, respectively, (c) 1 for both fillings and
(d) 1 and 0 for fillings 1/3 and 2/3, respectively.

Similar analysis of Fig. 2a–d provides the results gath-
ered in Table I. From these results we can see that chang-
ing from S+(S−) < 2λ to S+(S−) > 2λ for spin up
(down) changes the Chern numbers of the bands. There-
fore we can manipulate the Chern numbers of chosen
bands using various strengths of the staggered potential.
Note that since S± = vs ± vc, we can select both S+

and S− independently.

TABLE I

The Chern numbers for the three bands
depending on the choice of parameters.
The symbols S± and λ are defined in the text.

Parameters Chern number for band
Spin Potential Lower Middle Upper
up S+ < 2λ -1 0 1
up S+ > 2λ 0 -1 1

down S− < 2λ 1 0 -1
down S− > 2λ 1 -1 0

Based on this analysis, it is possible to obtain vari-
ous types of the quantum phases. For example choosing
S+ < 2λ, S− < 2λ and filling factor ν = 1/2 will re-
sult in total Chern number C = 0. However the Chern
numbers for single spins will be C = +1 and C = −1 so
the system will exhibit QSHE. On the other hand, if we
choose S+ > 2λ, S− < 2λ and filling factor ν = 1/2 and
shift the energies for the two spins such that the middle
band for the spin down is below the middle band for the
spin up, we will obtain the total Chern number C = 1
and therefore the system will exhibit QAHE, confirming
results obtained by Zhao and Shen [9].

4. Conclusions

We have presented entanglement spectrum and trace
index for various cases of spin, filling and parameter
choice for the decorated lattice with staggered potential.
This allowed us to identify the topologically trivial and
non-trivial phases and assign a Chern number to each
of the bands. Our analysis confirms predictions made by
Zhao and Shen [9] showing that depending on parameters
values the system may exhibit QSHE or QAHE.
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