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Shape dynamics of a system of two-dimensional electrons confined
by an effective flexible potential is studied as a function of number of
electrons, external magnetic field and temperature. Both in zero and non-
zero magnetic field a spontaneous breakdown of the rotational symmetry
of the system is identified for certain numbers of electrons. Oscillatory
dependence of the system deformation on the number of electrons reflects
filling of degenerate shells by electrons.

1. Introduction

Rapid progress in semiconductor technology has recently allowed creation of
quasi-zero-dimensional structures, the so-called quantum dots or artificial atoms
[1] and charging them with a well controlled number of electrons by applying a
bias between the dot and a distant metal electrode [2]. Quantum dots are formed
by imposing a lateral confinement to a quasi-two-dimensional electron gas. Since
the confining potential is usually smooth, it can be very well approximated by
a parabolic well [3, 4]. An important property of the parabolic potential is the
single-particle energy spectrum consisting of equally spaced degenerate shells.

As shown in Refs.[5, 6] for a model of a nucleus, a system of non-interacting
fermions confined to a three-dimensional parabolic well and only partially fill-
ing the valence shell, can under certain circumstances modify its self-consistent
energy spectrum by changing its shape, i.e. spontaneously break the initially
spherical symmetry of the confining potential. The shape phase transitions can
also be induced by cranking of the nucleus, since cranking has a similar effect on
the energy spectrum as a deformation (generates the anisotropy of single-particle
modes) [5, 6].
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One could expect a similar behavior of a parabolic quantum dot, where
the number of particles (fermions) is of the same order of magnitude and the
role of angular momentum in case of a cranking nucleus can be played by an
external magnetic field. The main differences between the two systems are lower
dimensionality in case of quantum dot and different nature of the interaction and
confining potentials. The attractive short-range interaction between nucleons in
a nucleus can be modeled by a smooth self-consistent single-particle field. While
in general the electron-electron interaction in quantum dots cannot be neglected
[4, 7] and the mean-field approach neglecting the electron-electron correlations
is often unjustified [8], the interaction is relatively less important in very small
dots (e.g. the self-assembled dots — SAD) where the kinetic energy quantization
is the dominant effect [9].

We will show in the following that assuming hypothetically a freedom to
adjust the (effective) confining potential leads to appearance of the magnetic field
induced phase transitions of the quantum dot shape. In the light of the results
for both systems studied here, a tendency to reorganize the energy spectrum
by the system of non-interacting fermions partially filling the degenerate shell
seems to be a general property, independent of the dimensionality.

Similar to Ref.[6] we shall adopt the thermodynamic approach, where the
fixed parameters are temperature and the number of electrons, which corre-
sponds to the considered physical situation. However, since the system contains
only 10-100 electrons, we shall mainly concentrate on very low temperatures,
where the thermodynamic potential governing the state of the system 1s equiva-
lent to the ground state energy and including the temperature is merely a formal
operation allowing for a convenient expression of the equations defining the state
of the system in terms of the relevant derivatives.

2. Model

Let us consider a two-dimensional system of N spinless electrons in the z-
y plane, confined by an effective lateral potential V, in an external magnetic
field B along the z-axis. The confining potential V' includes the rigid part Vg
due to the discontinuity in the energy of the conduction band at the interface
of the two materials forming the dot, external electric field produced by the
electrode defining the dot etc., and the hypothetical flexible single-electron self-
consistent field Vg, which can be attributed e.g. to the interaction with other
confined electrons and/or the mobile positive background (valence-band holes)
compensating the negative charge localized in the dot. The flexible contribution
Vr gives the whole effective potential V' a freedom to accommodate, on a limited
scale, the energetically favorable shape for given external parameters.
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Modeling for simplicity the potential V' by an anisotropic parabolic well
defined by two variational parameters (frequencies w, and w,), one can write
the single-electron Hamiltonian in the form

B = 2;(}) ~ AP + Tula + o), (1)
where m is the electron effective mass and B = rot A.

In analogy to the harmonic oscillator model of a nucleus [5, 6], the param-
eters w, and w, cannot be independent in order to model the cohesion and
non-compressibility of the dot (preventing the electrons from spreading out or
being squeezed to the point). Following this analogy we impose an additional
constraint on w, and w, in the form of the conservation of the potential’s volume:

wywy = W = const, (2)

which is equivalent to choosing the potential’s deformation a = w;/w, as the
independent variational parameter. As will be seen later from Eq.(7), @ measures
directly the deformation of the dot shape.

After the diagonalization procedure, the Hamiltonian (1) attains the form of
a pair of uncoupled harmonic oscillators with characteristic frequencies

1
wh = g(wi—kw;-{-w 2\/ 2 — wl)? + w?(2w2 + 2wE + w?), (3)
where w. = eB/mc is the cyclotron frequency. The single-electron energies are
n =hwi(ng + 3) + hw_(n_ + 1), where n = [ny,n_].
We can now introduce the grand canonical ensemble. Grand canonical po-
tential Q(T, g, wo,w.) is expressed through the grand partition function Z:

Q=—kgT InZ = —kgT Zln[l-{—exp#_en : (4)
= kT
As 1t is desirable to fix the average number of electrons instead of the chemical
potential, we further introduce a new potential F' via the following Legendre
transformation:

F(T,N,wg,w:) = QUT, p,wo,w.) + plV. (5)

Thus we deal with four fixed parameters T, IV, wy and w,., and two indepen-
dent internal variables a and p. Assuming the system to be in equilibrium, we
can define the necessary conditions for the minimum of potential F' at given
temperature, number of electrons and magnetic field:

oF oF

%"

o =0, (6)
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which reduce to the form:

< lo=N (7a)
<yi>=a’l<a?>. (7b)
Here the bar denotes quantum average (...)=< n|...|n > in the single-electron
state, and
<= Efiren it ®)
i S e o
- e

is the statistical averaging. Note that Eq.(7b) yields the geometrical interpreta-
tion of a as the parameter of shape deformation mentioned earlier. The equation
set (7a,b) can be conveniently written in terms of thermodynamical averages over
the quantum numbers ny:

< 1N (9a)

1 1
(<n++§>w+—<n_~|—§>w_>(1——a)=0. (gb)

This set of two non-linear equations with respect to o and p was solved numer-
ically with a modified Newton’s method.

There equation set (9a-b) has solutions of two types: symmetric (with o =
1) and non-symmetric (with @ # 1). The symmetric solution can be found
immediately by calculating the chemical potential x from Eq.(9a) since Eq.(9b)
vanishes in this case. For non-symmetric solutions both equations are important.
Note, however, that the chemical potential x and single-electron levels w4 for
non-symmetric solutions depend on magnetic field B only via frequencies wy
given by Eq.(3). Therefore, whenever there is a non-symmetric solution for a
field By and certain values of x4 and wy, the solution for a different field B, can
be constructed by changing a so that w; and w_ remain unchanged. Then, for
unchanged g, Eqgs.(9) remain valid. These solutions cannot be constructed for
arbitrarily high values of B; as required wy cannot be then obtained with any
value of a. Hence, the dependence «(B) for the non-symmetric case can be
obtained from the condition dw. /dw. = 0, which gives the equation

(wo = wy)* + wg = (7,), (10)

where w} , is the critical value of w, above which the v-th non-symmetric solution
does not exist. Parameters w}, (together with wx and ) can be calculated e.g.
through direct solution of Egs.(9) for any B such that w. < w}, (e.g. for B = 0).

An interesting observation is that the fact that frequencies wt, chemical
potential p, and consequently thermodynamical potential ' do not depend on
the magnetic field for a deformed configuration implies immediately that the
system magnetization M = @F/JB vanishes in this case.
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Figure 1. Dependence of the deformation parameter a on the average
number of confined electrons N in zero magnetic field at different tem-
peratures. Arrows indicate the ‘magic’ numbers: 15, 21, 28, 36 and 45.
Inset: thermodynamic potential versus deformation parameter a.

3. Results

The scaling parameter wy is the separation between single-electron energy
levels in the symmetric case in zero magnetic field. For computations we as-
sumed wy = 2 meV and the effective mass appropriate for GaAs, m = 0.067 m..
Presented results correspond to temperatures 7' < 10 K, at which the thermal
spread kg1 does not exceed half the excitation energy hwyg.

Let us begin with description of the solutions in zero magnetic field. It was
found that at sufficiently low temperatures (T' < 9 K i.e. kgT < 0.4Awy) the sys-
tem was circular only within certain intervals of number of electrons N. Outside
these intervals, in order to minimize their potential F', electrons spontaneously
break the rotational symmetry and form an ellipse described by the deformation
parameter . The dependence of a on number of electrons N was examined and
the resulting graphs for four different temperatures are presented in Fig.1. The
inset shows the potential F' as a function of a at fixed NV = 12 (/N determines
the chemical potential through Eq.(9a)). It is clear that for this particular N
potential F reaches its minimum at « # 1. Although formally N is a continuous
parameter here (a thermodynamic average), at very low temperatures, when
the procedure of minimizing the potential F' is equivalent to finding the system
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ground state, the most important are configurations of integer V. They are
marked in Fig.1 on the curve for 7' = 2.5 K with full circles.

Because of the shell structure of the energy spectrum, the low-temperatu-
re curves o(N) have a quasi-periodical character, with the period of several
electrons. The intervals of circular symmetry narrow with decreasing 7' and
eventually reduce to the ‘magic’ numbers in the limit 7 — 0. The ‘magic’
numbers describe the configurations with completely filled shells. As for the
two-dimensional parabolic potential the degeneracy of the shells grows linearly
with the shell index, the series of ‘magic’ numbers N} (indicated in Fig.1 with
arrows) can be found immediately: M = S, ¢ = 1k(k + 1). For comparison,
in the case of a three-dimensional parabola applicable e.g. to the nucleus [6] it is
NP =vF  Li(i+1) = 2k(k+1)(k+2). The chemical potential y as a function
of N exhibits sharp steps at the numbers A} which therefore indeed indicate
the stable configurations (excitation gap has a maximum and the fluctuation of

N given by: < N2> — < N >2= kgT ON/du drops down close to zero at N).

When the temperature increases and the thermal spread kgT becomes com-
parable with the inter-shell separation Awy, the effect of the shell structure van-
ishes. The amplitude of oscillations of a(/N) gradually decreases and above
T ~ 9 K the oscillations decay completely — the shape is no longer sensitive to
N. This process can be seen in the inset in Fig.1, where the deep minimum of
F at a = 1.35 is slowly pushed up with increasing T'.

Let us now turn to the solutions in non-zero magnetic field B. In Fig.2 the
thermodynamic potential F (solid lines) and deformation parameter « (dashed
lines) have been plotted with respect to B for all solutions of the equation set
(9). Number of electrons is N = 12 and temperature 7' = 0.25 K (for this
temperature the curves differ very little from those for ' — 0). We have labeled
the symmetric solution with the index 0 and all the non-symmetric (deformed)
ones with indexes 1-5. Comparing curve (0) with the curve F(c) shown in the
inset in Fig.1 one concludes the effect of applying an external magnetic field is
very similar to that of the shape deformation. Indeed, according to Eq.3 both
generate the anisotropy of single-electron modes wy and w_ which determines
the ground state energy and the excitation gap of the system.

At sufficiently low temperatures the potential F, of the symmetric state is
not a monotonous function of B. The distinct parabolic-like parts of the curve
F,(B) correspond to the configurations with different total angular momenta L.
They are separated by the sharp peaks at the values of B when the well defined
transitions between states with different L occur. The rising dependence L(B)
follows the magnetic field evolution of the two frequencies wy, given by Eq.3.
At B = 0 the degeneracy w; = w_ implies < ny >=< n_ > i.e. zero total
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Figure 2. The complete set of solutions to Egs.(9): thermodynamic
potentials F (solid line) and deformation parameters o (dashed line),
as functions of magnetic field B for N = 12 electrons at temperature
T = 0.25 K. The symmetric solution (a=1) is labeled by 0 and deformed
solutions are labeled by numbers 1-5.

angular momentum L = %k < n_ —ny >. When B increases this degeneracy is
removed and successive electrons change their orbitals increasing L. Eventually
in the strong fields B the structure of the Landau levels (LL) is formed and the
two frequencies evolve into the intra-LL frequency: w_ — 0, and the inter-LL
frequency: w; — w. (cf. Fig.J. Accordingly, in the lowest-energy configuration
in this regime all electrons are restricted to the lowest LL: < ny >= 0.

It is seen from Fig.2 that in the regions of B when 8F,/0B < 0 the symmetric
solution is thermodynamically unstable, i.e. it does not minimize the thermody-
namic potential F'. The analysis of equation set (9) reveals that a non-symmetric
solutions appear, marked in Fig.2 as 1-5, with the constant potentials F, equal
to the local minima of Fy(B). According to Eq.10 these non-symmetric solutions
exist only below the critical values of the field (i.e. of the cyclotron frequency
w;,), that appear to be the values at which the potential F, reaches its local
minima F),:

OF,

ows,

= 0. (11)

Therefore, the pair of equations (10) and (11) allows for the calculation of all
non-symmetric configurations, i.e. dependences a(B), u(B) and F(B), from the
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Figure 3. Magnetic field evolution of the deformation parameter o
for the piece-wise continuous solutions of Egs.(9) minimizing potential
F. Each frame corresponds to the indicated number of electrons N and
temperature 7. Insets show the shapes of the extremally deformed dots.

dependence F,(B).

Behavior of the deformation parameter o, for each v-th non-symmetric so-
lution, following from Eqs.10 and 11, is also presented in Fig.2.

Increasing temperature leads to the appearance of the thermal mixing be-
tween different configurations. The dependence L(B) evolves gradually from the
step-like curve to a smooth line and so does the slope of the thermodynamical
potential (0F/dB). Consequently, the intervals of B where the non-symmetric
solutions are favorable shrink and eventually disappear completely — the system
is circular for all values of B. The thermal decay of the non-symmetric solutions
is presented in Fig.3 where we show the field dependence of the deformation pa-
rameter a for two numbers of electrons N = 12 and 21 (deformed and symmetric
shape in zero magnetic field, respectively) and two temperatures T = 0.25 K and
T = 2.5 K (close to the zero-temperature limit and the intermediate regime, re-
spectively). The field dependences of chemical potential y, which together with
a provide a complete solution of the equation set (9), is shown in Fig.4.

At each value of B we plotted « and p corresponding to the thermodynami-
cally stable solution, i.e. minimizing the potential F'. As a result, the piece-wise
continuous curves were obtained, showing discontinuous changes of the shape
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Figure 4. Magnetic field evolution of the chemical potential u for the
piece-wise continuous solutions of Egs.(9) minimizing the potential F.

of the system, similar in all frames. An interesting observation is thau the ef-
fect does not depend on whether the system was symmetric (N = 12) or not
(N =21) at B =0. An increase in the number of electrons does not destroy the
effect which persists for much larger N where the statistical approach becomes
valid. It is also important to notice that the phase transitions from the symmet-
ric to a deformed state are of the first order (thermodynamic potential F' is not
smooth and deformation parameter « is discontinuous) whereas the transitions
from deformed to symmetric state — of the second order as only the slope of «
1s discontinuous.

The frequencies wy defined by Eq.3, independent of B for the non-symmetric
configurations, define the single-electron excitation spectrum of the system.
They can be measured directly as resonances by the far-infrared (FIR) spec-
troscopy methods. '

In Fig.5 we plotted the evolution of the excitation spectra calculated for 12
and 21 electrons, at temperature T' = 0.25 K (kgT = 0.01hwo). The dashed
lines indicate the symmetric-state curves (corresponding to the stable solutions
at higher temperatures ' > 9 K) are insensitive to the number of electrons N
(the unique property of a harmonic well). The solid lines relate to the equilibrium
solutions at low-temperature and contain the structure strongly dependent on
N, reflecting the deformed configurations of the system.

Due to the so called generalized Kohn’s theorem [7, 10] the electron-electron
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Figure 5. Magnetic field evolutions of the single-electron excitation
spectra calculated for N = 12 and 21 electrons at temperature T = 0.25
K.

interaction, which is practically neglected within our model, does not influence
the FIR spectrum of a rigid quantum dot as a consequence of the hidden symme-
tries associated with the parabolic confinement. In other words, in a real system
the interaction does not introduce any deviations from the single-electron-like
excitation spectrum and the effect of spontaneous deformation presented here
should not be disturbed. In particular, removal of the w; = w_ degeneracy at
B = 0 for certain numbers of electrons at sufficiently low temperatures might
be a useful test to verify our hypothesis.

However, the splitting between w,. and w_ is fairly weak here (~ 0.6 meV for
N = 12), so that this and all other energy-like parameters F, p1, ws, wyy, charac-
teristic temperatures, cyclotron frequencies (i.e. magnetic fields) etc. scale with
the confining potential (wp). In very small dots (e.g. SAD), which can, however,
contain fewer electrons, wy can be larger by at least an order of magnitude sig-
nificantly enhancing all the energies characteristic of the effect and increasing
the critical temperatures.

In the above considerations we assumed that system was strictly two-di-
mensional. In the real quasi-two-dimensional quantum dots there is a potential
pushing the electrons to the z—y plane, with the energy level separation in the
z-direction much higher than wy. As a result, all electrons remain in the lowest
level and the influence of excitations to higher levels is negligible. We have veri-
fied that including this effect only weakly modifies the dependence a(B) and the
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shape transitions persist. An observable effect of the quasi-two-dimensionality,
however insignificant in our model, is the finite spread of electrons wave-functions
along the z-direction leading to the renormalization of the electron-electron in-
teraction.

4, Conclusions

In summary, we have studied the shape dynamics of the system of quasi-two-
dimensional non-interacting electrons confined by a parabolic well (quantum
dot). The magnetic field induced phase transitions of the shape have been
identified reflecting the tendency of the fermionic system partially filling the
valence shell to reorganize its energy spectrum and lower the total energy. These
phase transitions are analogous to those of a cranking nucleus.

It should be emphasized that the phase transitions identified here are due to
the fermionic nature of electrons (or nucleons), which was taken into account by
the minimization procedure for the system of particles occupying the available
energy levels according to the Pauli exclusion principle, and described by an
effective hamiltonian.

Described transitions have been obtained within the very simplified approach
(one-particle approximation and equilibrium thermodynamics). Nevertheless, it
would be extremely interesting to explore the possibility of their experimental re-
alization since this effect might provide the basis for designing various electronic
devices, for example a micro-switch controlled with magnetic field.
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