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Motivated by two independent experiments revealing a resistance minimum at the Landau level (LL) filling
factor ν = 2 + 4/9, characteristic of the fractional quantum Hall effect (FQHE) and suggesting electron
condensation into a yet unknown quantum liquid, we propose that this state likely belongs in a parton sequence,
put forth recently to understand the emergence of FQHE at ν = 2 + 6/13. While the ν = 2 + 4/9 state proposed
here directly follows three simpler parton states, all known to occur in the second LL, it is topologically distinct
from the Jain composite fermion (CF) state which occurs at the same ν = 4/9 filling of the lowest LL. We predict
experimentally measurable properties of the 4/9 parton state that can reveal its underlying topological structure
and definitively distinguish it from the 4/9 Jain CF state.
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The fractional quantum Hall effect (FQHE) [1,2] forms a
paradigm in our understanding of strongly correlated quantum
phases of matter. Of particular interest among the panoply of
FQHE phases are the ones observed in the second Landau
level (SLL) of ordinary semiconductors such as GaAs. These
have attracted widespread attention because of the possibility
that the excitations of these phases obey non-Abelian braiding
statistics, which could potentially be utilized in carrying out
fault-tolerant topological quantum computation [3,4].

FQHE was first observed at filling factor ν = 1/3 [1] in
the lowest LL (LLL) and was explained by Laughlin using his
eponymous wave function [2]. Soon a whole zoo of fractions
were observed, primarily along the sequence n/(2pn ± 1) (n
and p are positive integers) and its particle-hole conjugate [5].
These FQHE states can be understood as arising from the
integer quantum Hall effect (IQHE) of composite fermions
(CFs) [6,7], which are bounds states of electron and an even
number (2p) of quantized vortices. The theory of weakly
interacting CFs captures almost all of the observed FQHE
phenomenology in the LLL.

In comparison to the FQHE in the LLL, the FQH states
in the SLL are fewer in number and are more fragile [8].
Moreover, the nature of many FQH states in the SLL is
dramatically different from their LLL counterparts. In par-
ticular, one of the strongest FQH states in the SLL occurs
at ν = 2 + 1/2 [8], whereas at the corresponding half-filled
LLL a compressible state is observed. A key breakthrough in
the field of FQHE came about by a proposal of Moore and
Read [9], who posited a “Pfaffian” wave function to describe
the state at ν = 5/2. Subsequently, it was understood that
the Pfaffian wave function can be interpreted as a p-wave
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paired state of composite fermions [10]. The excitations of
the Pfaffian state are Majorana fermions which, owing to their
non-Abelian braiding properties, could form building blocks
of a topological quantum computer [3,4].

The nature of the state at 1/3 state in the SLL, although
believed to be Laughlin-like, has been under intense debate
[11–17]. FQHE has been observed at ν = 2 + 2/5 [18–21] but
is widely believed to be of a parafermionic nature, unlike the
Abelian LLL Jain CF state at ν = 2/5 [22–29]. Furthermore,
as yet there is no conclusive experimental evidence of FQHE
at the next three members of the n/(2n + 1) Jain sequence,
namely ν = 3/7, 4/9, and 5/11, in the SLL [30], though some
features of FQHE have been reported in the literature at some
of these fillings [19,20,31]. (A non-Abelian parton state at 3/7
was constructed in Ref. [32] and shown to be feasible in the
SLL.) However, FQHE has been observed at ν = 2 + 6/13
[21]. These observations collectively point to the fact that
the nature of FQHE states in the LLL and SLL are different
from each other, and a description of FQHE states in the SLL
likely entails going beyond the framework of noninteracting
composite fermions.

Recently, candidate “parton” states have been constructed
to describe the FQHE at many of the experimentally observed
fillings in the SLL [33–35]. The parton theory [36] produces
model incompressible states beyond the Laughlin [2] and the
CF theory [6]. The “n̄2̄111” parton states for n = 1, 2, 3 give a
good description of the SLL FQHE states observed at ν = 2 +
2/3, 2 + 1/2 and 2 + 6/13 [33,34]. In particular, the n̄2̄111
sequence underscores the unusual stability of 6/13 in the SLL.

In this work, we consider the next member of the n̄2̄111
parton sequence, namely 4̄2̄111, and consider its feasibility
at ν = 2 + 4/9. While FQHE at 2 + 4/9 has not been estab-
lished conclusively, indications for it in the form of a min-
imum in the longitudinal resistance have already been seen
in experiments [19,31]. Future experiments on high-quality
samples could likely establish FQHE at this filling by an
observation of a well-quantized plateau in the Hall resistance.
We show that the 4̄2̄111 parton state gives a good description
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of the exact SLL Coulomb ground state seen in numerics. Fur-
thermore, the parton state is energetically favorable compared
to the 411 Jain CF state at 2 + 4/9 in the thermodynamic
limit. Therefore, if FQHE is established at ν = 2 + 4/9, it
is highly likely to be distinct from its LLL counterpart at
ν = 4/9, which is well described by the 411 Jain CF state. The
parton state is topologically distinct from the Jain CF state and
we make predictions for experimentally measurable quantities
that can unambiguously distinguish the two. In particular, the
parton state supports counterpropagating edge modes that do
not occur in the Jain CF state.

The parton theory put forth by Jain [36] constructs FQHE
states as a product of IQH states. The essential idea is to break
each electron into fictitious objects called partons, place the
partons into incompressible IQH states, and recover the final
state by fusing the partons back into the physical electrons.
The N-electron wave function for the l-parton Jain state,
denoted as n1n2 . . . nl , is given by

�n1n2...nl
ν = PLLL

l∏
μ=1

�nμ
({z j}). (1)

Here z j = x j − iy j is the two-dimensional coordinate of elec-
tron j which is parametrized as a complex number, μ denotes
the parton species, and PLLL implements projection into the
LLL. Each parton species is exposed to the external magnetic
field and occupies the same area, which fixes the charge of
the μ parton species to qμ = −eν/nμ, with

∑
μ qμ = −e,

where −e is the charge of the electron. The state �nμ
is the

Slater determinant IQH wave function of N electrons filling
the lowest |nμ| LLs. We allow for nμ < 0 and negative values
are denoted by n̄, with �n̄ = �−|n| = [�n]∗. The parton state
of Eq. (1) occurs at a filling factor of ν = (

∑
μ n−1

μ )−1 and has
a shift [37] of S = ∑

μ nμ in the spherical geometry.
The Laughlin state [2] is a “11 . . . ” parton state. The parton

state n11 (n̄11) with wave function �CF
n/(2n+1) = PLLL�n�

2
1

(�CF
n/(2n−1) = PLLL[�n]∗�2

1) correspond to the Jain CF states
[6]. Recently, it has been shown that parton states of the form
“221 . . . ,” which are not composite fermion states, could be
viable candidates to describe certain FQH states observed in
the LLL in wide quantum wells [38] and in LLs of graphene
[39,40].

The motivation for considering the 4̄2̄111 parton state
stems from the recent application of parton theory to capture
states in the SLL [33–35]. Consider the family of parton states
described by the wave function

� n̄2̄111
ν=2n/(5n−2) = PLLL�n̄�2̄�

3
1 ∼ �CF

n/(2n−1)�
CF
2/3

�1
. (2)

The ∼ sign in Eq. (2) indicates that the states written at both
sides of the sign differ slightly in the details of the projection.
We expect that such details do not change the topological
nature of the states [41]. Throughout this text, for the n̄2̄111
parton states we use the form given on the rightmost side of
Eq. (2). A nice feature of the parton wave functions stated in
Eq. (2) is that they can be evaluated for large system sizes
which allow a reliable extrapolation of their thermodynamic
energies. One can construct the above parton states for large
system sizes because the constituent Jain CF states can be

evaluated for hundreds of electrons using the Jain-Kamilla
method of projection [7,42–45]. The Jain CF states in this
work are evaluated using the Jain-Kamilla method.

The n = 1 member, namely 1̄2̄111, is likely topologically
equivalent to the ν = 2/3 2̄11 Jain CF state [41]. The n =
2 member 2̄2̄111 has a good overlap with the exact SLL
Coulomb ground state at ν = 5/2 [33]. The n = 3 state,
3̄2̄111, gives a good description of the Coulomb ground state
at ν = 2 + 6/13 [34]. In the Supplemental Material (SM)
[46], we provide further evidence in favor of the feasibility of
the 3̄2̄111 parton state to describe the ν = 2 + 6/13 FQHE.
We shall consider the n = 4 member of this sequence which
occurs at filling factor 4/9.

Although there is no definitive observation of FQHE at 4/9
in the SLL, signatures of incompressibility have been seen
at ν = 2 + 4/9 and its particle-hole conjugate at ν = 2 + 5/9
[19,31]. FQHE at ν = 2 + 4/9 is likely swamped by a bubble
phase [30]; however, it is likely that with improvements in the
sample quality or for some interaction parameters close to that
of the SLL Coulomb one, FQHE will ultimately be observed
at 2 + 4/9.

For all our calculations, we deploy Haldane’s spherical
geometry [47], in which N electrons reside on the surface of
a sphere in the presence of a radial magnetic field generated
by a monopole of strength 2Q(hc/e) located at the center of
the sphere. FQHE ground states occur at flux values 2Q =
ν−1N − S , where S is a rational number called the shift,
which is useful in characterizing the topological nature of
the FQHE state [37]. All FQHE ground states are uniform
on the sphere and thus have total orbital angular momentum
L = 0. The parton states � n̄2̄111

ν=2n/(5n−2) of Eq. (2) satisfy the
flux-particle relationship 2Q = [(5n − 2)/(2n)]N − (1 − n);
i.e., their filling factors are ν = 2n/(5n − 2) and their shifts
are S = 1 − n. Of particular interest to us in this work is
the 4̄2̄111 parton state which has a shift of S = −3. This
parton state is topologically distinct from the 411 Jain CF
state which also occurs at ν = 4/9 but has a shift of S = 6.
We assume a single-component system and neglect the effects
of LL mixing and disorder. Under these assumptions, states
related by particle-hole conjugation are considered on the
same footing.

Throughout this work, we shall write wave functions in the
LLL, which is where they are easily evaluated, even though
they might apply to states occurring in the SLL. Haldane
[47] showed that the physics of the SLL can be simulated in
the LLL by using an effective interaction that has the same
set of Haldane pseudopotentials in the LLL as the Coulomb
interaction has in the SLL. In this work, we have used the form
of the effective interaction described in Ref. [48] to simulate
the physics of the SLL in the LLL.

Let us begin by testing the viability of the 4̄2̄111 parton
state for ν = 2 + 4/9 FQHE. In Fig. 1 we compare the
energies of the 4̄2̄111 parton and the 411 Jain CF states at
ν = 4/9 in the LLL and the SLL. In the LLL, as expected, we
find that the Jain CF state has lower energy than the parton
state. However, in the SLL we find that the 4̄2̄111 parton
state is energetically more favorable compared to the Jain CF
state. For the sake of completeness, we have also investigated
the competition between the parton and Jain CF states in the
n = 1 LL of monolayer graphene. The effective interaction
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FIG. 1. Thermodynamic extrapolations of the Coulomb per-
particle energies for the 411 Jain composite fermion (CF) state
and the 4̄2̄111 parton state. The left-hand, middle, and right-hand
panels show energies for ν = 4/9 in the n = 0 LL, n = 1 LL of
GaAs, and in the n = 1 LL of monolayer graphene respectively.
The extrapolated energies, obtained from a linear fit in 1/N , are
quoted in units of e2/(ε�) on the plot (error in the fit is indicated
in the parentheses). The energies include contributions of electron-
background and background-background interactions and are density
corrected [52]. The LLL Coulomb energy for the ν = 4/9 Jain CF
state has been reproduced from Ref. [53].

we use to simulate the physics of the n = 1 LL of monolayer
graphene in the LLL is described in Ref. [49]. We find the 411
Jain CF state has lower energy here, consistent with the fact
that experimentally observed FQHE states in the n = 1 LL of
monolayer graphene are well described by the CF paradigm
[49–51]. Results for n = 0 LL of graphene are identical to
those in the LLL of GaAs under our working assumptions of
neglecting effects of finite width and LL mixing.

Next, we turn to comparisons of the parton state with
the exact SLL Coulomb ground state. The smallest system
accessible to exact diagonalization (ED) is that of N = 16
electrons at a flux of 2Q = 39 which has a Hilbert space
dimension of 7 × 108. We have evaluated the ground state for
this system with the truncated pseudopotentials from the disk
geometry, which differ slightly from the spherical pseudopo-
tentials but are known to provide a more reliable extrapolation
to the thermodynamic limit [54,55]. The exact SLL Coulomb
ground obtained by using the truncated disk pseudopotentials
has L = 0. In Fig. 2 we compare the pair-correlation function
[56] of this exact SLL Coulomb ground state with that of the
4̄2̄111 parton state. Both these pair-correlation functions show
oscillations that decay at long distances, which is a typical
characteristic of incompressible states [57,58]. Moreover, the
two pair-correlation functions are in reasonable agreement
with each other. For completeness, we have also evaluated
the exact LLL Coulomb ground state for the same system.
The overlaps of the LLL and SLL Coulomb ground states
obtained using the disk pseudopotentials is 0.3663 and their
pair-correlation functions are also very different from each
other [46], which indicate that the nature of the ground state
in the two LLs are very different.

Currently, we do not have a reliable estimate of the
thermodynamic values of the gaps predicted by our parton
ansatz. However, we can extract the charge and neutral gaps
for N = 16 particles from exact diagonalization of the SLL
Coulomb interaction at the parton shift. The charge gap
here is defined as [E (2Q = 40) + E (2Q = 38) − 2E (2Q =

FIG. 2. The pair correlation function g(r) as a function of the arc
distance for the exact second Landau level Coulomb ground state
obtained using the disk pseudopotentials for width w = 0 and w =
3�, and the 4̄2̄111 parton state of Eq. (2) for N = 16 electrons at a
flux of 2Q = 39.

39)]/4, where E (2Q) is the exact ground-state energy at flux
2Q and the factor of 4 in the denominator accounts for the
fact that the addition of a single flux quantum in the parton
state produces four fundamental quasiholes. The neutral gap
is defined as the difference between the two lowest exact
energies at the flux of 2Q = 39. The charge and neutral
gaps for N = 16, evaluated using exact diagonalization with
the disk pseudopotentials, are 0.009 e2/ε� and 0.005 e2/ε�

respectively, where � = √
h̄c/(eB) is the magnetic length and

ε is the dielectric constant of the background host material.
We next consider the effect of finite width on the system,

which we model by taking the transverse wave function to be
the ground state for an infinite square quantum well of width
w (see SM [46] for details). For the disk pseudopotentials, we
find that the ground state for 16 electrons has L = 0 for (at
least) w � 5� [46]. Moreover, the pair-correlation function
of the exact ground state agrees well with that of the parton
state for the entire range of widths considered in this work
(see Fig. 2 and Ref. [46]). Furthermore, we find that the
system has robust charge and neutral gaps for all the widths
considered. We note that the L = 0 ground state is delicate.
In particular, the exact SLL Coulomb ground state obtained
using the spherical pseudopotentials has L = 2. However, the
overlap between the lowest energy L = 0 state obtained using
the spherical pseudopotentials and the ground state obtained
using the disk pseudopotentials is 0.9692, which indicates
that these two states are close to each other. Encouragingly,
with the spherical pseudopotentials, as the quantum well
width is increased the ground state turns uniform in the range
w ∈ (0.5, 1]� and stays uniform for w ∈ [1, 10]� [46]. These
results indicate that finite thickness enhances the stability of
the parton state.

Now that we have made a case for the plausibility of the
4̄2̄111 parton state to occur in the SLL, we shall turn to
deduce the experimental consequences of this parton ansatz.
An additional particle in the factor �4̄ has charge e/9, whereas
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that in the factors �2̄ and �1 has a charge 2e/9 and −4e/9
respectively. All the quasiparticles of the 4̄2̄111 parton state
obey Abelian braid statistics [59]. The 4/9 Jain CF state is
also an Abelian state and hosts quasiparticles of charge −e/9
and −4e/9.

Next, to infer other topological consequences of the 4̄2̄111
ansatz, we consider the low-energy effective theory of its
edge, which is described by the Lagrangian density [60–63]:

L = − 1

4π
KIJε

αβγ aI
α∂βaJ

γ − 1

2π
εαβγ tIAα∂βaI

γ . (3)

Here εαβγ is the fully antisymmetric Levi-Civita tensor, A is
the vector potential corresponding to the external electromag-
netic field, a is the internal gauge field, and we have used
the Einstein’s convention of summing repeated indices. The
integer-valued symmetric K matrix and the charge vector t of
Eq. (3) for the parton state are given by (see SM [46] for a
derivation)

K =

⎛
⎜⎜⎜⎝

−2 −1 −1 0 1
−1 −2 −1 0 1
−1 −1 −2 0 1
0 0 0 −2 1
1 1 1 1 1

⎞
⎟⎟⎟⎠, t =

⎛
⎜⎜⎜⎝

0
0
0
0
1

⎞
⎟⎟⎟⎠. (4)

The above K matrix has four negative and one positive
eigenvalues and thus the 4̄2̄111 state hosts four upstream and
one downstream edge modes. A naive counting suggests that
there are a total of nine edge states for the 4̄2̄111 ansatz:
four from the factor �4̄, two from �2̄, and one from each
factor of �1. However, these edges states are not all inde-
pendent since the density variations of the five partons must
be identified. This results in four constraints and leads to five
edge states consistent with that ascertained from the above
K matrix.

Assuming full equilibration of the edge modes, the thermal
Hall conductance κxy at temperatures much smaller than the
gap takes a quantized value proportional to the chiral central
charge c−, which is defined as the difference in the number
of downstream and upstream modes: κxy = c−[π2k2

B/(3h)]T
[64]. For 4̄2̄111 ansatz, we thus predict a thermal Hall con-
ductance of κxy = −3[π2k2

B/(3h)]T . The Hall viscosity of
the 4̄2̄111 state is also expected to be quantized [65]: ηH =
h̄ρ0S/4, where ρ0 = (4/9)/(2π�2) is the electron density and
S = −3 is the shift of the parton state. The ground-state
degeneracy of the parton state on a topologically nontrivial
manifold with genus g is |Det(K )|g = 18g. Besides the nn̄111
parton states [17], the 4̄2̄111 ansatz provides another example
of a fully spin polarized Abelian FQH state at ν = a/b (with

a, b coprime), which has a ground-state degeneracy on the
torus that is greater than b.

The 4/9 Jain CF state is described by the 4 × 4 K matrix
K = 2C4 + I4, where Ck is the k × k matrix of all ones
and Ik is the k × k identity matrix, and charge vector t =
(1, 1, 1, 1)T . In contrast to the 4̄2̄111 state, assuming the
absence of edge reconstruction, the 4/9 Jain CF state has
four downstream edge states and no upstream modes. The
4/9 Jain CF state thus has a thermal Hall conductance of
κxy = 4[π2k2

B/(3h)]T . Moreover, the Hall viscosity of the 4/9
Jain CF state is given by ηH = (3/2)h̄ρ0, corresponding to
shift S = 6. On a manifold of genus g, the 4/9 Jain CF state
has a degeneracy of 9g.

The presence of upstream neutral modes can be detected
in shot noise experiments [66–69]. Recently, thermal Hall
measurements have been carried out at several filling factors
in the lowest as well as the second LL [70–72]. These ex-
periments can be used to test the predictions of the parton
theory and therefore can unambiguously distinguish between
the topological nature of the 4/9 states in the SLL and the
LLL. In particular, including the contributions of the filled
LLLs of spin up and spin down, the thermal Hall conductance
of the 4̄2̄111 state in the SLL is −[π2k2

B/(3h)]T which is
different from what one would expect from the 4/9 Jain CF
state in the SLL, which has κxy = 6[π2k2

B/(3h)]T .
In summary, we have considered the viability of the

“4̄2̄111” parton state for FQHE at ν = 2 + 4/9 where the first
signs of incompressibility in the form of minimum in longi-
tudinal resistance have already been observed experimentally
[19,31]. Interestingly, if FQHE eventually stabilizes at this
filling factor, then it is likely to be topologically different from
its LLL counterpart at ν = 4/9, which is described by a Jain
CF state. We also proposed experimental measurements that
can reveal the underlying topological structure of the parton
state and decisively distinguish it from the 4/9 state occurring
in the lowest Landau level.
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